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Abstract
In this work we focus on methods for representing acoustic-phonetic knowl-

edge in a speech recognizer and for analyzing the system's behavior in de-
tail. The testbed for developing these methods is a segment-based hidden
Markov model (HMM) recognizer. In this system, measurements are made
on variable-duration segments. Ideally, each segment is associated with a
single phonetic unit, which we refer to as a phone. The scheme has several
potential advantages over the typical HMM recognizer, which is based on fixed-
duration frames. They include a greater ability to model statistical dependence
among spectral measurements, a more convenient framework for representing
acoustic-phonetic knowledge, and a potential reduction in computation since
the mean segment rate in our implementation is 1/5 of a typical frame rate.

The HMM framework is used to model the segmenter's deviations from the
ideal behavior of one segment per phone. We employ an HMM topology that
allows a phone to be associated with more than one segment. Biphone HMM's
model instances in which a segment is associated with more than one phone.

We compared the effectiveness of various segment measurement sets on a
phonetic recognition task. The measurements consisted of short-time spectral
representations measured at particular positions relative to segment bound-
aries. The key result was that the addition of spectra measured outside the
segment to those measured inside led to a significant improvement in perfor-
mance. For the task of recognizing 39 phone labels, the best system attained
a phonetic accuracy (% correct - % insertions) of 59% (95% confidence inter-
val of 53-65%) on a set of nine male speakers from the VOYAGER corpus, a
result in the range of those previously reported for recognizers of comparable
complexity.

In the course of investigating methods for representing knowledge in the
measurement sets, we built linear regression models to estimate F, and F2 from
a set of mel-frequency spectral coefficients (MFSC's). We show that such a
model is inadequate for predicting formant values at the ends of their observed
ranges. However, hy adding nonlinear transformations of the MFSC's to the
regressor set, highly-accurate models (R2 > .96) valid for more than 80% of
observed formant frequencies could be built.
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We employed multiple discriminant analysis to reduce the dimensionality of
the measurement sets. We also developed a technique we term grouped multi-
ple discriminant analysis to address the fact that within-class covariance varies
greatly among phones, contrary to the assumptions of conventional multiple
discriminant analysis. By clustering within-phone covariance matrices hierar-
chically using a distance metric based on a statistical test for the equality of
covariances, we show that they cluster well by phone type. Grouped multi-
ple discriminant analysis attempts to exploit this fact. Phonetic recognition
performance using this method to reduce dimensionality was near that of con-
ventional multiple discriminant analysis.

We used the segment-based HMM to investigate word modelling issues as
well. Models were compared using a word spotting task. The models var-
ied along three dimensions: training method, type of pronunciation network,
and measurement set. Even for fairly small training sets, models trained from
word-specific data outperformed those built from context-independent sub-
word models. Multiple-pronunciation networks were shown to be superior
to single-pronunciation networks for modelling pronunciation and segmenter
variability. Finally, as was the case for phonetic recognition, word spotting
performance improved when out-of-segment measurements were added to the
set.

In the course of this investigation, we developed novel algorithms for word
spotter scoring and performance evaluation. The scoring algorithm determines
the beginning and end points of a presumed keyword and computes an esti-
mate of the probability that the keyword occurred between those points. The
performance evaluation algorithm is novel in that it breaks speech into discrete
"trials" and counts the number of trials corresponding to false alarms and cor-
rect detections as a function of a keyword detection threshold. This turns
out to be a convenient framework for both overall performance evaluation and
detailed error analysis.

Finally, we outline the philosophy of exploratory data analysis and discuss
how the methodology can be employed in the design of speech recognizers. To
demonstrate the approach, we develop a set of interactive graphical tools for
diagnosing recognition errors at various levels of detail. At the most detailed
level, the tools assign "blame" for an error to individual measurements. We
demonstrate the tools in case studies of word spotting errors. By using these
tools to gain insight into recognizer behavior, a system designer will presum-
ably be able to diagnose and remedy acoustic modelling deficiencies. This will
most likely be possible if a large number of errors can be attributed to a few
deficiencies. For the case studies, we show that most errors do indeed seem to
be related to a small number of underlying deficiencies..

Thesis Supervisor: Dr. Victor W. Zue
Title: Principal Research Scientist
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Chapter 1

Introduction

The prevalent approach to automatic speech recognition involves the use of

hidden Markov models (HMM's) to model probability distribution functions

(PDF's) of measurements made on fixed-length segments, or frames, of speech.I

In their most basic form, the measurements made on each of these frames rep-

resent the magnitude of the short-term spectrum in the vicinity of the frame.

A good description of an early system of this sort appears in [Rabiner 83].

An excellent review of advances in speech recognition up to 1988 appears in

[Lee 88]. For more detailed descriptions of speech recognition systems built

before 1980 and reviews of the history of speech recognition to that point, see

[Lea 80].

More recently, state-of-the-art continuous speech recognizers, e.g., [Chow 87,

Cohen 90, Paul 91], have taken advantage of increased computing power and

access to more training data to build HMM recognizers that address cer-

tain modelling deficiencies of earlier versions. These can be classified as ei-

ther acoustic-phonetic or statistical modelling deficiencies. Examples of the

acoustic-phonetic modelling deficiencies include the failure to account for the

effect of coarticulation on the realization of a given phoneme, which has

been addressed with triphone and/or word-specific phone modelling [Bahl 80,

Schwartz 85, Chow 86, Lee 88]; and the inability to deal with speaker variabil-

ity, which has been addressed with gender-specific models [Kubala 91], vari-

'A guide to abbreviations used in the thesis appears in Appendix C
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ous speaker-adaptation schemes (Stern 87, Rigoll 89, Rtischev 89, Kubala 90,

Stern 91, Bellegarda 92] and the introduction of measurements of spectral

change [Furui 86] that vary less among different speakers than do static mea-

surements. Examples of statistical modelling deficiencies include weaknesses

in vector quantization [Rabiner 831 which have been addressed by more effec-

tive techniques that use multiple VQ codebooks [Gupta 87, Chow 87, Lee 88,

Cohen 90] or mixture distributions [Huang 89, Bellegarda 90, Ney 90, Paul 91];

and incorrect assumptions about the form of the PDF, which has been ad-

dressed with discriminant or connectionist training techniques, e.g., [Brown 87,

Katagiri 91, Renals 92] and postprocessors of various types (summarized in

[Schwartz 92]). Finally, other researchers have eschewed the HMM framework

altogether and have adopted other approaches. These include the stochastic

segment (Ostendorf 89, Zue 89a] and segmental neural network [Leung 92] ap-

proaches, which have also attempted to deal with various perceived deficiencies

in HMM's. We might also include in this inventory approaches such as neural

networks [Waibel 88, Leung 89, Lippmann 89] which have been used mainly

for speech recognition subtasks such as phoneme recognition rather then as

the bases for complete systems.

Published reports of system improvements tend to indicate that the model

deficiencies addressed were anticipated based on prior knowledge about acoustic-

phonetics and statistical modelling rather then analysis of the behavior of the

system being improved. Also, while speech recognizer design has been in-

formed by general knowledge about perception (e.g., the commonly used mel-

frequency representation [Davis 80] is based on the psychophysical concept of

critical-band filters [Zwicker 61]) and acoustic-phonetics (e.g., triphone mod-

elling is a response to the effect of coarticulation), little attempt has been

made to examine how this knowledge, as well as more detailed knowledge

about speech, is represented in the Markov models so as to develop insight

into model deficiencies. Instead, researchers have generally improved a speech

recognizer by recognizing an existing deficiency based on prior knowledge, at-

16



tempting to remedy the deficiency, usually by increasing system complexity,

and testing whether the improvement had the desired effect with general mea-

sures of recognizer performance, such as overall word error rate.

While this methodology has been successful in reducing error rates dra-

matically (e.g., Lee [Lee 90] cites word error reductions of greater than 50% in

going from phone to triphone models), it is not at all clear that the method-

ology, along with increased training data and increased number of system

parameters for taking advantage of the extra data, will continue to lead to

increased performance indefinitely, as has been suggested by some (Lee 89 a].

We believe that at some point, a deeper understanding of the system will be

required to effect improvement. Put another way, we feel it is unjust'.-d to

assume a recognizer's strengths and weaknesses without analyzing recognizer

errors and tracing their sources. Thus, we believe a new methodology, based

on understanding recognizer behavior in more detail and relating the behavior

to our prior knowledge about acoustic-phonetics and statistics, will be required

for diagnosing and remedying model deficiencies.

This belief motivates our work, whose primary goals are to develop a better

understanding of how acoustic-phonetic knowledge is represented in a statis-

tical speech recognizer and to develop a methodology for analyzing system

behavior at a deep level in terms of this knowledge. Towards these ends, we

make heavy use of the philosophy of exploratory data analysis (EDA) pro-

pounded by Tukey (Tukey 77] and others.

We develop this understanding in the context of building an HMM recog-

nizer. We use the HMM approach because it is a powerful statistical modelling

technique with fairly simple mathematical underpinnings compared to those of

competing statistical approaches such as neural networks [Lippmann 89] and

stochastic segment models fOstendorf 89, Zue 89a]. For these reasons, it is

well-suited to our goal of attaining deeper understanding of system behavior.

However, our system is atypical of most HMM implementations in that

it makes measurements on variable-duration segments produced by a seg-
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mentation algorithm rather then on the fixed-length frames commonly used.

The segments are delineated by acoustic landmarks across which there are

large spectral changes, and these landmarks often correspond to acoustic-

phonetic boundaries. Such a system has certain attractive features compared

to a frame-based one including a better framework for modelling correlations

among neighboring spectra, less computation, and, perhaps most important for

our work, a more appropriate framework for incorporating acoustic-phonetic

knowledge. We discuss these features in more detail in Chapter 3, where the

segment-based HMM system is described. We know of only one implementa-

tion of this type (LeMaire 891 and it was tested on a digit recognition task.

Thus, there has been little discussion of how to build subword models in such

a system and no published evaluation of such a system on a more difficult task.

A secondary goal of our work is to illuminate the issues and to evaluate the

feasibility of this approach to speech recognition.

Another goal is to investigate several issues that arise in building acoustic

models of words. In particular, we compare training strategies and pronun-

ciation network topologies. We conduct this investigation in a word spotting

framework and suggest certain refinements to the methods currently used for

scoring and evaluation of word spotters.

1.1 Previous Work on Speech Knowledge Rep-
resentation and Error Analysis in Statis-
"tical Speech Recognizers

As pointed out above, all existing statistical speech recognition systems incor-

porate some general knowledge about speech in an implicit manner. However,

while the extent to which more explicit and detailed representation of speech

knowledge in a statistical recognizer can improve recognition has been dealt

with by several researchers, it remains an open question.

Zue [Zue 851 advocated increased use of speech knowledge to improve ex-
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isting algorithms. Two areas of application were identified: the selection of

acoustic attributes for characterizing the signal and the control strategy used

for combining acoustic attributes so as to recover the underlying utterance.

Zue pointed to some successes in applying speech-specific knowledge to the se-

lection of acoustic attributes but pointed out that there had been little success

in applying speech knowledge to the cue integration problem and that classi-

cal multivariate statistical techniques worked best in practice. He attributed

the success of these and other statistical techniques to their ability to model

ignorance about the underlying process and to thereby make "optimal use of

what knowledge we do have" rather then to any theoretical justification for

their use.

Conversely, Levinson [Levinson 85] argued that statistical methods "con-

stitute a powerful theory of speech that can be reconciled with and elucidate

conventional linguistic theories while being used to build truly competent me-

chanical speech recognizers" and provided a comprehensive review of these

methods. Just as Zue pointed out that there was some merit in using statisti-

cal methods, Levinson pointed out that there was some merit in using speech-

specific knowledge. Specifically, he argued that "regularities which have been

catalogued by linguists are too striking and consistent to be accidental and

should be used to constrain the [statistical] models" which include variables

that "merely account for non-information-bearing artifacts." Reducing the

number of degrees of freedom in these models, would presumably improve

model parameter estimation for a fixed amount of training data.

With some exceptions, the evolution of speech recognition research since

these views were published in 1985 has been away from the use of explicit

speech knowledge. In fact, instead of using such knowledge even minimally

so as to constrain model complexity, as proposed by Levinson, models have

become ever more complex and have relied on increased training data rather

then explicit speech knowledge to improve parameter estimation of the more

complex models.
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Counterexamples to this trend, consisting of attempts to incorporate speech

knowledge explicitly, have had mixed results. We present several such exam-

ples here. We will confine our examples to continuous or connected speech

recognition systems since they provide more stringent tests of the effectiveness

of explicit knowledge representation than do simpler tasks.

Encouraging results were obtained by Bush and Kopec [Bush 871 who

achieved among the best results of that time for speaker-independent con-

nected digit recognition using a recognizer that made extensive use of explicit

knowledge in selecting acoustic measurements and in accounting for p1 )m-

ena such as prepausal lengthening. Moreover, in comparing different s 2m

configurations, they found that configurations that made use of this knowl-

edge performed best. The measurements were made on variable-length acous-

tic segments rather then fixed-length frames and so were not limited to short-

term spectral representations and measurements of short-term spectral change.

Thus, this framework was more amenable to the inclusion of knowledge-based

measurements.

However, it should be pointed out that since the publication of that paper,

better results have been obtained on the same task using frame-based HMM's

that include little speech-specific knowledge [Doddington 891. Thus, for this

task at least, it cannot be said that speech-specific knowledge has been useful.

Lee [Lee 88] found that certain additions of speech-specific knowledge to

SPHINX, a frame-based HMM for speaker-independent continuous speech, im-

proved performance while others did not. In particular, system performance

improved when mel-frequency cepstral coefficients [Davis 80] were used instead

of LPC-based cepstral coefficients and when differenced cepstral coefficients

were added to the measurement set. Also, the use of phonological rules to

transform pronunciation baseforms led to some improvement. However, an at-

tempt to integrate "knowledge-based" measurements based on variable-length

acoustic segments rather then frames into the HMM by combining acoustic

scores from a system based on such measurements with those of SPHINX
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degraded performance. Also, performance was about the same for a system

that used explicit pronunciation networks and multiple pronunciations for cap-

turing phonological variability at the word level as for one that used a single

pronunciation per word. Thus, as Lee pointed out, "the greatest improvements

came not from intricate acoustic-phonetic parameters or elaborate phonologi-

cal rules, but from crude knowledge of speech and English."

Conversely, papers by SRI International [Weintraub 89, Cohen 901 report

that the incorporation of explicit phonological rules improved performance

in a high-performance HMM speech recognizer. The authors attributed the

difference between their results and Lee's to the fact that the networks used in

their work allowed relatively few pronunciations per word compared to those

of the multiple-pronunciation networks used by Lee, and thus provided a more

appropriate degree of constraint on allowable pronunciations [Weintraub 89].

The SRI results suggest that speech-specific knowiedge can be useful, at least

at the phonological level.

There have been a few other attempts to apply explicit knowledge to the

selection of acoustic measurements in a statistical speech recognizer. One of

these has been the SUMMIT speaker-independent continuous speech recognition

system [Zue 89a], which uses a semiautomatic method (Zue 89b] to determine

measurements made on variable-length acoustic segments. The measurements

are based on explicit speech-specific knowledge rather then being based exclu-

sively on short-term spectral representations. For instance, certain of them

are intended to model formant frequencies, since formants play a large role in

theories of speech production and perception. The most recent comparisons of

the performance of SUMMIT to frame-based HMM recognizers on the same task

indicate that performance of SUMMIT is comparable but slightly inferior to the

best HMM recognizers [Pallett 91]. Since SUMMIT's design is not as mature

as that of frame-based HMM systems, ongoing improvements in SUMMIT may

change this situation.

Still, it has yet to be demonstrated that a recognizer that uses explicit
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speech-specific knowledge in determining acoustic measurer-ents can outper-

form one that uses solely short-term spectra within an HMM framework. One

possible explanation for this is that frame-based HMM's implicitly characterize

many of the same acoustic phenomena that advocates of speech-specific knowl-

edge believe should be characterized using a more complex set of attributes

and/or a more complex control strategy. It would be worthwhile determining

the extent to which this is true. Armed with this knowledge, a speech recog-

nizer designer could focus future attempts at incorporating explicit knowledge

on the modelling of phenomena that are not well characterized by frame-based

HMM's. As discussed in the next section, portions of our work are concerned

with this investigation. We investigate the issue directly by building models

relating short-term spectra to more speech-specific attributes such as formants

and distinctive features in Chapter 4 and indirectly by developing methods of

analyzing recognizer errors at a detailed level in Chapter 6.

In contrast to the issue of speech-specific knowledge, detailed error anal-

ysis has received little attention by speech recognition researchers. Usually,

Dublished reports of system performance include only general measures such

as word and sentence error rate with little attempt made to analyze error pat-

terns in greater detail. However, there have been some exceptions. In some

cases, e.g., [Lee 88], errors have been enumerated and some attempt has been

made to find patterns in them. Doddington [Doddington 89] made a relatively

detailed error analysis on a connected digit recognition task, including an anal-

ysis of the types of confusions made, an identification of the characteristics of

speakers for which there were high error rates, and spectrographic displays

and LPC syntheses of several of the system's acoustic models. In neither of

these cases was the published error anal, :s used as a basis for making further

system refinements. However, Bush and Kopec [Bush 871 examined confusion

matrices and spectrograms of misrecognized tokens and used the results of

these examinations to refine their system, thus demonstrating the value of

detailed error analysis.
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1.2 Scope and Structure of Thesis

We use the VOYAGER [Soclof 90] and TIMIT [Lamel 861 speech corpora in our

investigations. Both include continuous speech from multiple speakers. The

TIMIT corpus is used for training only while the VOYAGER corpus is used

for both training and testing. In Chapter 2 we describe these corpora and

how they are used in our work in more detail. Also, we describe the two fre-

quency schemes we use to characterize short-term spectra: hair-cell envelopes

and mel-frequency spectral coefficients. The acoustic measurements we make

throughout our work are based on these spectral representations. Finally, we

provide a brief description of principal component analysis, a technique used

to reduce the dimensionality of the spectral representations.

In Chapter 3, we describe the segmentation algorithm and motivate its use

in more detail. We then provide an analysis of segmenter behavior. Finally,

we discuss how subword HMM's are built out of the segments, paying spe-

cial attention to design issues that are specific to the segment-based HMM

approach.

The issue we discuss in greatest detail is that of designing a set of acoustic

measurements for characterizing each segment. This matter is dealt with in

Chapter 4. The measurement sets considered are compared on a phonetic

recognition task that uses the subword models introduced in Chapter 3. Our

motivation for investigating different measurement sets is twofold. First of all,

it is primarily through the measurements that acoustic-phonetic knowledge

can be incorporated in the recognizer. Secondly, choosing measurements in

a segment-based system is not as straightforward as in a frame-based one

because it is not appropriate to assume that the spectrum is stationary over

the course of a segment.

We use the phonetic recognition task for the comparison because it is fairly

simple to implement and because it has been used by others (Schwartz 85,

Lee 89b, Leung 90, Robinson 91b, Digilakis 92] to test various systems and so
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provided a convenient way to test the feasibility of the segment-based IVtI.\

approach.

Chapter 4 contains several results of particular interest:

1. The relationship between mel-frequency spectral coefficients and formant

frequencies is shown to be non-linear. We develop a multiple regression

model for F, and F2 based on non-linear transformations of the coeffi-

cients that is highly accurate, though over a restricted range of formant

frequencies.

2. The inclusion in the measurement set of spectral measurements made

just outside the segment is shown to improve performance substantially.

3. The best results achieved are comparable to those reported for existing

systems of similar complexity. Thus. :he segment-based HMM appears

to be a feasible alternative for speech recognition to existing approaches.

While the phonetic recognition task is a convenient one for studying cer-

tain issues in speech recognition, the ultimate goal of most speech recognition

systems is to recognize strings of words. There are certain issues in word mod-

elling that are of interest but cannot be studied in the phonetic recognition

task. Thus, in Chapter 5, we incorporate the segmenter in a word spotter,

which is a system that spots designated keywords in a stream of continuous

speech. The word spotting task allows us to concentrate on modelling a few

keywords of interest. This contrasts with the word recognition task, for which

we would have to model each word in the vocabulary of the speech corpus

being used to test the system. This simplification contributes to the goal of

understanding system behavior at a detailed level since it pares away complex-

ity that makes such understanding difficult. Within the chapter, we provide a

formal description of the word spotting task, introducing several refinements to

the techniques currently used for keyword scoring and for performance eval-

uation, including a significance test for comparing the performance of two

2n



word spotters on the same task. Also, we compare the performance of word-

and subword-trained models and investigate the effect on performance of the

use of word pronunciation networks of various types. Finally, we introduce

techniques for analyzing speech recognizer behavior at a detailed level and

use them to explain a large increase in performance observed in going from a

single- to a multiple-pronunciation model.

In Chapter 6, we outline some of the key principles of exploratory data

analysis and introduce a specific methodology for building spe,&-:h recognizers

based on these principles, contrasting it to the prevailing inethodole'gy. Ad-

ditionally, we develop specific techniques for applyin" these principles to the

design of speech recognition systems. In pa: I'cular, we extend the techniques

introduced in Chapter 5 for analyzir'g recognizer behavior so as to gain in-

sight into behavior at a L.eper "evel. The new techniques are demonstrated

in a case study of word spotting errors. The aim if the techniques is to allow

the system designc" 'o rapidly id'.. ,ify errors and to develop an understand-

ing of th,-r ;.uses at the measurement set level. It is hoped in using such

Lechniques th .he values of a small number of measurements can be blamed

for a large percentage of errors and that, moreover, patterns can be identified

that will allow system behavior to be interpreted in terms of acoustic-phonetic

knowl- ige. If these hopes are fulfilled, diagnosing model deficiencies becomes

tractable since the diagnosis can be conducted in a relatively small measure-

ment subspace, and acoustic-phonetic knowledge can be brought to bear on

the problem. For the case study, the hope is fulfilled. While diagnosing the

specific model deficiencies that caused the errors is beyond the scope of our

work, we provide specific suggestions for pursuing the diagnosis and general

suggestions for using the information thus gained to improve the models.

Finally, in Chapter 7, we summarize our work and suggest promising di-

rections for future work.

The remainder of this chapter consists of an outline of a general model for

HMM speech recognition. The purposes of the model are to
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Figure 1.1: A statistical speech recognizer. See text for explanation of symbols.

1. introduce the characteristics common to most HMM speech recognizers,

2. make explicit the assumptions that are usually made implicitly in their

design, and

3. provide a framework for describing our work and comparing it to other

work in the field.

1.3 The Speech Recognition Model

The following is a general description of an HMM-based speech recognizer. The

description presented pertains not only to conventional frame-based HMM's

but to the variable-duration segment HMM's used in our work. Many of the

aspects presented are common to other statistical speech recognizers so we

will tend to be as general as possible in our description, pointing out aspects

specific to HMM's when necessary.

The general model is schematized in Figure 1.1. A speaker produces a

test utterance, which consists of one or more words from a finite vocabulary.

The utterance can be represented as an utterance label L, and an observed
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waveform z(r) where u is an index into the set of all possible utterances.

For the purposes of simplicity, we will assume that there is a finite number

of allowable utterances, although this is not true if there are no limits on

the number of words in the utterance. The utterance label is typically the

orthographic transcription of the string of words produced. The waveform

is usually digitized and can thus be represented formally as a sequence of

integers. Generally, the waveform is processed and converted into a sequence

of observation vectors yT(t), 1 < t < T where T is the total number of

vectors in the utterance.2 We describe this process in greater detail below.

The speech recognizer must determine the correct utterance label given the

utterance waveform. A statistical recognizer accomplishes this by building

utterance models. Each such model consists of an hypothesized utterance label

L, and an utterance acoustic model Zi. The latter is a statistical model for the

observation vectors given the hypothesized label. The recognizer computes a

score Si that reflects the likelihood that model Zi produced the sequence of
yT(t). The recognizer outputs the hypothesized index it corresponding to the

utterance acoustic model Z& with the highest score. The recognizer is correct

if fl = u.

Most current statistical speech recognizers have other details in common.

They each include a set of lezical-acoustic units, each unit consisting of a

lexical label ai and a lexical-acoustic model Mi where i is an index into the set

of units. The set of units is chosen by the system designer. For instance, in a

small-vocabulary recognizer, each unit is typically a word.

A key characteristic of these models is that they can be concatenated to

form utterance acoustic models. In HMM recognizers the method for concate-

nating two acoustic models is to join the final state of one model to the initial

state of the next one [Jelinek 76, Lee 88].

The utterance model is built out of the lexical-acoustic units according to
2 We will conventionally represent observation vectors as row vectors. This will be con-

venient for algebraic manipulations of these vectors introduced in later chapters.
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a, a4

L1 => (aa 2 a3 , ala3 a4J

Li z

5 6

Figure 1.2: Example of lexicon rule. Utterance model Z1 with label L1 built
out of HMM's MI, M2, M3, and M 4 with corresponding lexical labels a1 ,
a2, a3, and a4. Circles are HMM states identified by index and arrows are
allowable state transitions. Transition probabilities not included. Note that
the utterance label is represented by more than one sequence of lexical labels.

rules specified in the lexicon. Figure 1.2 represents the building of an utterance
". model out of constituent lexical-acoustic units.

An example of a simple lexicon is that for a small-vocabulary, isolated word

recognizer, for which the lexical-acoustic units model words. For this example,

the lexicon specifies a one-to-one mapping between lexical-acoustic models and

utterance acoustic models as well as between lexical labels and hypothesized

utterance labels.

In large-vocabulary systems, the labeiling process is not quite as stra.ght-

forward. It is currently infeasible to build a model directly for each word in a
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large vocabulary because this would require enough instances of each word to

generate statistically reliable models. This, in turn, would require the collec-

tion of a very large training corpus. While the collection of such large corpora

is underway [Phillips 921, at the current time devoting specific models to each

word in a large vocabulary system is impractical.

Thus, a smaller set of labels capable of representing each word in the vo-

cabulary must be used. Theoretically, phonemes could be used. However, it

is typical to take the surface realization of the underlying phoneme string into

account when representing a word in terms of constituent labels so that there

is less variation in the acoustic realizations for a given label. Thus, for exam-

ple, in a continuous-speech system, any vowel that tends to be reduced might

be represented by the same label whether or not the underlying phoneme is

a /o/. As another example, distinct labels may be used to represent stops

that tend to be released and those that do not. These labelling choices are

made by the system designer. We will refer to labels which are based on the

surface realization of the underlying phoneme string as phones and to their

corresponding acoustic models as phone models.

In large-vocabulary systems, phone labels are concatenated to form word

labels according to rules specified by the lexicon. Utterance labels are built

in turn by concatenating word labels. A similar process is used to generate

utterance acoustic models from phone models.

The lexicon may include a pronunciation network and a language model

[Jelinek 761. The former assigns a probability to each mapping from a word

label to a lexical label sequence. These probabilities are used to build word

acoustic models from the lexical-acoustic models. In an HMM system, this

is done by assigning probabilities to arcs joining the final state of one lexical

HMM to the initial state of the following one. The language model is analogous

to the pronunciation network but is used for building utterance acoustic models

out of word acoustic models. As shown in Figure 1.2, the language model

and/or pronunciation network may specify more than one allowable mapping
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between an utterance label and a sequence of lexical labels.

In general, the inventory of lexical labels must satisfy the following decod-

ability criteria:

1. Each allowable utterance label must map to at least one sequence of

lexical labels according to the rules of the lexicon; and

2. No two utterance labels (unless they are homonyms) map to the same

sequence of lexical labels.

Furthermore, for good recognition performance, the set of lexical-acoustic

units must be capable of discriminating among sequences of observation vectors

associated with distinct lexical labels. To meet this requirement, the lexical-

acoustic models should satisfy the following discriminability criteria:

1. The measurements yr(t) made on each acoustic segment must capture

sufficient information for such discrimination.

2. The model PDF of the sequence of observation vectors for a given label

estimated from the training set should correspond closely to the true

PDF of this sequence of vectors given the label. This requirement is

related to the well-known pattern recognition result that a maximum

a posteriori classifier achieves the highest theoretical performance (the

Bayes rate) when the true PDF's for the class-specific measurement vec-

tors are used (Duda 73].

The lexical-acoustic model associated with each lexical label is determined

in the training process using a set of training utterances. The steps in this

process are transcription, acoustic segmentation, and acoustic model building.

During transcription, each training utterance label is mapped to a sequence

of lexical labels using the lexicon's rules. The mapping is in the opposite

direction to that used in building utterance models out of lexical-acoustic

units. Each training utterance is then transcribed so that each portion of its
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waveform is associated with a lexical label.' Formally, the transcription is

a mapping between each lexical label and a time interval measured relative

to the onset of the utterance. We will refer to the portion of the waveform

associated with a particular lexical label as a lexical region and will say that

the region is occupied by the label. More specifically, if the lexical label is a

phone label, we will refer to the lexical region as a phonetic region.

Typically, automated procedures are used to transcribe waveforms into a

time-aligned string of phonetic labels. The procedures are often based on
"seed" transcriptions that have been determined manually by a transcriber.

The transcriber typically chooses the label which he/she judges to best corre-

spond to the acoustic quality of the waveform as heard or as represented in a

spectrogram. Transcription boundaries tend to be placed at points that demar-

cate waveform regions possessing different acoustic qualities. Their placement

is based on the transcriber's judgment.

During acoustic segmentation, the waveform is broken into acoustic seg-

ments according to a segmentation algorithm and a vector of acoustic measure-

ments xT(t) is associated with each segment where t indexes the measurement

vectors. This measurement vector is often used directly as the observation

vector so that y(t) = x(t). However, it is sometimes useful to make a trans-

formation y(t) = T(z(t)) and use the resultant observation vectors to train

the models. In our work, we will often make use of linear transformations

represented by a matrix multiplication yT(t) = zT(t)T and in these cases we

will make a distinction between the measurement and observation vectors, the

latter being used directly to train the state PDF's. We should point out, how-

ever, that in some cases we make several transformations between the original

set of acoustic measurements made on each segment and the observation vec-

tor so that at times we will refer to a measurement vector that itself has been

transformed from some other measurement vector. In all cases, our meaning
3 For simplicity, we will not generalize the model to include stochastic transcription, in

which more than one label may be associated to a portion of the waveform, with weights
assigned to reflect strength of association.
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should be clear from the context in which the terms are used.

Formally, each segment can thus be described by its observation vector

along with a ý,:me interval measured from the start of the utterance. Thus,

the segmentation process converts the waveform into a sequence of observation

vectors, as stated above.

In most current recognition systems, the segmentation algorithm is simple.

Each segment is a frame of the same duration, usually about ten millisec-

onds. The measurements made generally represent the segment's spectrum.

They can be in the form of outputs of auditory [Seneff 86], simulated auditory

[Davis 801, or linear predictive [Rabiner 83] models. The observation vector

for a particular segment may also include measurements made on portions of

the waveform outside the segment. For example, the dynamics of the spectrum

in the vicinity of a segment may be represented as regression coefficients or as

the difference in filter outputs measured on frames which precede and follow

the segment [Furui 86]. We will refer to a system with fixed-duration acoustic

segments as a frame-based system.

Figure 1.3 illustrates the process of training a model once transcription

and acoustic segmentation have been accomplished. At this point, each lex-

ical label in the training utterance can be associated with the sequence of

acoustic segments (whose boundaries are denoted by dashed lines in the fig-

ure) occupying the same time interval. The set of sequences associated with a

particular label over all the training utterances is used to estimate the param-

eters of the acoustic model associated with the label. This set constitutes the

training data for the model. The arrows in the figure depict the associations

between segments and labels. The resultant model is a statistical summary of

the training data and is used to predict the sequence of observation vectors

associated with the label that would be produced in a test utterance. Note

that the underlying assumption made is that all information relevant to iden-

tifying the lexical label is included in the observation sequence associated with

the label during transcription. However, this is not as much a limitation as
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Figure 1.3: Training a lexical-acoustic model Mk. Regions denoted ak occu-
pied by lexical label ak. Unlabelled regions occupied by other labels. Vertical
lines in the segmentation are acoustic segment boundaries. Solid vertical lines
are lexical region boundaries as well. Arrows depict associations between lex-
ical regions and acoustic segments. Observation vector yT () signifies the ith

training observation vector for model Mk.
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it may seem since an observation vector made on a particular segment may

include measurements based on portions of the waveform outside the segment

boundaries. For example, measurements of spectral differences across one or

both of the segment boundaries may be included.

It should be pointed out that this figure is an idealization in the sense

that the transcribed label regions align exactly with segments, making the

association between the two simple. In Figure 3.4, there is an illustration of an

actual alignment between labels and segments produced by our segmentation

algorithm.

In an HMM, an alignment algorithm such as the forward-backward algo-

rithm [Jelinek 76] is used to associate acoustic segments with states in each

lexical-acoustic model. For each state, transition probabilities are estimated

which reflect the association between acoustic segment and state sequences

(i.e., if there is a high transition probability from state r to state s, it is

likely that an acoustic segment following a segment associated with r will be

associated with s).

Simultaneously, parameters are estimated that represent the probability

distribution function (PDF) of the observation vectors yT(t) associated with

each state. We will refer to this as the state PDF. The PDF is often rep-

resented as a multivariate Gaussian, for which a mean and a covariance are

estimated. The vector quantization (VQ) representation is also used frequently

[Rabiner 83, Bahl 81]. In this method, a number of prototype observation vec-

tbrs is determined and each one is assigned an index. Each observation vector

associated with a particular state is represented by the index of the prototype

closest to it according to some distance metric. The state PDF is represented

as a a histogram of relative frequencies of each index.

In the recognition process, the test utterance is segmented according to the

same segmentation rule used in training and the same measurements made on

the acoustic segments. Thus, the utterance can be represented as a sequence

of observation vectors. The lexicon is used to combine lexical-acoustic models

34



to search for the utterance acoustic model most likely to have produced the

observation sequence. The corresponding utterance label is output by the

recognizer. The search involves hypothesizing different utterance labels and

computing the score for each of them. As mentioned above, an HMM system

builds an utterance acoustic model out of a sequence of lexical-acoustic models.

As in the training process, the scoring process involves aligning the sequence

of observation vectors with the sequence of lexical-acoustic models. Thus, for

each utterance hypothesis, there is an association between each lexical acoustic

model and part of the utterance's observation sequence. We will refer to the

corresponding mapping between each lexical label and the start and end times

of the observation sequence as an hypothesized transcription. As well, there is a

likelihood that the observation sequence was produced by the lexical-acoustic

model. We will : -, to this likelihood as the acoustic match between the

model and the *.oservation sequence.

We should point out that the description in this section does not pertain

to the class of statistical speech recognizers based on the stochastic segment

model described by Ostendorf and Roukos [Ostendorf 89]. Two other examples

of speech recognizers employing this model are the SUMMIT system (Zue 89a]

and the system described in [Leung 921. For these recognizers, the recognition

process involves hypothesizing many possible segmentations and simultane-

ously choosing the model sequence and segmentation which yields the best

recognition score. By contrast, in an HMM-based system, a segmentation is

determined first and then the mode, sequence which yields the highest score

for the observation sequence is found.

Formally, the two approaches are quite different. The score that an HMM

assigns reflects the probability of observing a sequence of observation vectors.

If each observation vector is of size q and there are T of them, the HMM score

for a model sequence is an estimate of the probability that the sequence of

models produced the observed point in a vector space of dimension qT. This

is a well-formulated estimation problem. The same is not true in the stochastic
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segment model, for which different segment sequences must be scored against

each other. Not only are the vector spaces upon which the probability estima-

tion is made different, they are not of equal dimension. In practice, the varying

dimensionality necessitates the use of an arbitrary normalization scheme, as in

[Ostendorf 891. While the stochastic segment model has 1 -en shown to yield

results competitive with those of HMM's for some tasks [Digilakis 921, we pre-

fer to use the HMM framework in the present work since, for the reasons just

cited, it is more amenable to mathematical analysis.

Finally, we should point out that some of the assumptions made in the

model we have described here can best be thought of as "engineering ap-

proximations" to reality. For example, it is simplistic to assume that the

acoustic quality of each region of the waveform corresponds to just one pho-

netic label. In fact, the identity of surrounding labels and other factors affect

acoustic quality. Approaches to dealing with this issue will be discussed fur-

ther in Chapter 5. The problems with this assumption notwithstanding, to

our knowledge no alternative to this process has been employed in building a

statistical recognizer and it is beyond the scope of our work to develop such

an alternative.

It has also been suggested that the idea of representing a word label as

string of lexical labels is overly simplistic and that a more appropriate repre-

sentation would involve a matrix of distinctive features [Stevens 90]. Again, it

is beyond the scope of our work to explore such a representation.
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Chapter 2

Speech Corpora and Signal
Representation Techniques
Used

!n this chapter, we describe the speech corpora and signal representation tech-

niques used throughout our work. Section 2.1 provides a brief description of

the VOYAGER corpus and outlines why it was chosen. Section 2.2 describes

the VOYAGER and TIMIT corpora in more detail, concentrating on signal pro-

cessing and phonetic transcription. Finally, Section 2.3 describes the hair-cell

envelope and mel-frequency spectral representations, both of which are used in

the present research. That section also describes principal component analysis,

a scheme used to reduce the dimensionality of the spectral representations.

2.1 The VOYAGER Corpus

VOYAGER is a system which responds to natural-language queries about the

geography of Cambridge, MA as well as to queries about private and public

establishments within Cambridge, such as post offices, libraries, and restau-

rants. The speech corpus was collected from fifty male and fifty female speak-

ers interacting with the system for about twenty minutes each. Orthographic

transcriptions of each sentence spoken spontaneously during the interaction

period were subsequently presented to the speaker to be read. Thus, each

37



sentence is represented by two utterances, one spontaneous and one read. We

use only the read sentences in our work.

We chose this corpus because it includes relatively large numbers of par-

ticular content words, including proper nouns such as "Baybank", "Harvard",

and "MIT" In Chapter 5, we examine the effect of word model type on perfor-

mance in relation to whether the modelled word is a content or function word.

Thus, the VOYAGER corpus is useful for our purposes.

2.2 Details of the TIMIT and VOYAGER Cor-
pora

The TIMIT and VOYAGER corpora were recorded under similar conditions, us-

ing a Sennheiser close-talking noise-cancelling microphone, and were digitized

with DSC 240 audio control 'xes [Zue 89c, Fisher 86]. TIMIT was initially

lowpass filtered to 8 kHz, sampled at 20 kHz and downsampled to 16 kHz while

VOYAGER was filtered at 6.4 kHz and sampled at 16 kHz Since the spectral

representations described below use bandpass filters whose center frequencies

are all below 6.4 kHz, we felt that the difference in cutoff frequencies would

not pose a problem in combining training data from the two corpora and us-

ing VOYAGER test data. Early on in our work, we verific. that the corpora

were compatible by performing an experiment comparing word spotting per-

formance using VOYAGER training data alone and both VOYAGER and TIMIT

training data. Since use of the extra data from TIMIT improved performance

we decided to retain the two corpora in the training set.

The corpora were transcribed using different methods, however. The TIMIT

utterances were first phonetically transcribed by a phonetician and then aligned

with the CASPAR alignment system [Leung 841. Those of VOYAGER were first

automatically transcribed and aligned using the SUMMIT recognizer and were

then checked and modified manually. In this automatic transcription process,

each word in each utterance was represented as a network of phonetic symbols.
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A set of phonological rules [Zue 90a] was used to produce the networks. Con-

sequently, each word was represented by more than one sequence of phonetic

labels. The SUMMIT recognizer was used to find the aligned sequence of pho-

netic labels that produced the highest acoustic score on each utterance being

transcribed. Even though the resulting transcriptions were checked manually,

there is evidence that there was a tendency among the transcribers to preserve

the automatic transcriptions unless there were gross errors. Thus, most of the

variability among the phonetic strings used to represent each word in the VOY-

AGER corpus is probably due to the phonological rules and SUMMIT system.

This is an issue because the transcriptions are used in our work to train both

subword and word models and to evaluate phonetic recognition performance.

Where it is pertinent, we will discuss the effect of this transcription technique

on our results.

For our work on word spotting, we required time-aligned orthographic tran-

scriptions as well. For the TIMIT corpus, these transcriptions were provided

for each utterance. For the VOYAGER corpus, the transcriptions were derived

from the VOYAGER time-aligned phonetic transcriptions using the AAT pro-

gram [Kassel 86]. Given phonetic and orthographic transcriptions for an ut-

terance and a dictionary associating each word in the training data vocabulary

with allowable phonetic spellings, the program aligns the two transcriptions.

The alignme.. is used in conjunction with the utterance's time-aligned pho-

netic transcription to produce a time-aligned orthographic transcription.

In both corpora, silence regions before and after each utterance were re-

tained and labelled with a special transcription symbol. Rather then employ

and endpoint detector or build a model for these regions, we removed the si-

lences before further processing according to the endpoints indicated in the

transcription. We also removed from the beginning and end of the utterances

any non-speech events such as lip smacks and pauses that were identified in

the transcription.

Only data from male speakers were used for training and testing purposes.
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We made this decision because there is evidence that gender-specific acous-

tic models outperform models trained from both sexes [Bush 87, Kubala 91].

Rather then building two sets of models or addressing issues of speaker adap-

tation or normalization, we decided to build models for speakers ,Uf Just one

gender. Male speakers were chosen because they form 70% of speakers in

the TIMIT database and so provided more training data. We will specify in

greater detail the training and test sets used for each experiment where we

describe the experiment.

2.3 Spectral Representations

We used two different spectral representations in our work, the hair-cell en-

velopes and the mel-frequency spectrum. Before computing either of these

representations, each waveform's energy was normalized by scaling the wave-

form so that the maximum absolute sample value over the entire utterance

was constant for all waveforms.

2.3.1 The Hair-Cell Envelope Representation

The hair-cell envelope (HCE) representation is derived from the Seneff Audi-

tory Model [Seneff 86]. It consists of a set of coefficients, each representing

the firing rate of hair cells tuned to a particular frequency band. The fre-

quency bands used correspond to psychophysical critical bands [Zwicker 61].

For the 0-6.4 kHz bandwidth, there are 40 coefficients in the representation.

The hair-cell response in each band is a monotonically non-decreasing func-

tion of the energy in the band. The function is non-linear and, in particular,

the response is set to 0 below a particular energy threshold and is clipped to

a maximum value for energies above a threshold. The set of firing rates is

sampled every 5 ms. The representation has been used in several phonetic

classification and speech recognition systems [Glass 88, Leung 89, Meng 90,

Leung 92, Niyogi 91, Zue 89a, Sorensen 89].
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In our work, we used the hair-cell envelopes in the segmenter and for the

first set of phonetic recognition and word spotting experiments we performed.

However, for reasons to be discussed in Chapter 4, we used the mel-frequency

spectral representation in subsequent experiments.

2.3.2 The Mel-Frequency Spectral Representation

The mel-frequency spectrum (Davis 80, Meng 90] is also a representation of the

energy within each of a set of frequency bands. In our implementation, it is

sampled every 5 ms and consists of 40 coefficients. To compute it, a short-time

Fourier transform is computed on a pre-emphasized waveform every 5 ms using

a 25 ms Hamming analysis window. Within each of 40 frequency bands, the

magnitudes of the Fourier coefficients are multiplied by a triangular window

and summed. We will refer to the triangular windows as filters throughout

the thesis. The mel-frequency spectral coefficient (MFSC) associated with a

given filter is the logarithm of the sum of the windowed Fourier coefficient

magnitudes in that band. The filter centers are linearly spaced below 1 kHz

and logarithmically spaced above 1 kHz, i.e., they are placed at equal intervals

along the mel scale and have a bandwidth proportional to their spacing. The

spacing is designed to model the psychophysical critical bands. Mel-frequency

representations have been used in a number of speech recognition and phonetic

classification systems including those described in [Gupta 87, Chow 87, Lee 88,

Ostendorf 89, Cohen 90, Paul 91, Digilakis 921.

For most speech recognition work, including that described in the afore-

mentioned references, the coefficients are linearly transformed into mel-frequency

cepstral coefficients using a cosine transformation [Davis 80]. Only the lower-

order coefficients (i.e., those produced by the lowest-quefrency1 cosines) are

retained. The main motivation for this transformation is that the lower-order

coefficients are related to the coarser features of the spectral shape which are

believed to be the most useful for phonetic discrimination. Thus, the transfor-

'quefrency is the cepstral-domain analog of frequency
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mation serves as a dimensionality reduction technique. Reducing dimension-

ality is desirable because it reduces the computation required in computing

acoustic scores and the storage required for a system's lexical-acoustic models.

Additionally, given limited training data, reducing dimensionality can lead to

improved recognition performance [Duda 73].

2.3.3 Principal Component Analysis

We have chosen to accomplish dimensionality reduction using principal com-

ponent analysis [Johnson 881. We used this method to reduce the dimen-

sion of both the hair-cell and mel-frequency representations. Given a set of

measurement vectors each of length p, the method is used to find the linear

combination of measurements which has the highest variance. That linear

combination is the first principal component. The second principal compo-

nent is the linear combination orthogonal to the first component that has the

highest variance, and so forth. Thus, the method produces p principal com-

ponents in decreasing order of variance. This technique has often been used

to reduce the dimensionality of spectral representations. See, for example,

[Plomp 67, Pols 69, Klein 70, Pols 73, Bocchieri 86, Glass 881.

Principal components are computed by performing an eigenanalysis of the

sample covariance or sample correlation matrix. The resulting variables are

referred to as covariance and correlation principal components, respectively.

When the variances of the measurements differ widely, covariance principal

components tend to lie in the directions of the measurements with largest

variance, regardless of the structure of the data. In such a case, correlation

analysis yields more useful results. In fact the results of correlation analysis

are the same as those that would be obtained if the original measurements

were first scaled so that they each had the same variance and were then sub-

ject to covariance analysis. Put another way, if the measurements each had

the same variance to start out with, covariance and correlation principal com-

ponents would yield the same results. Thus, correlation principal components
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are more general. For this reason, we chose to use them even though neither

the hair-cell-envelope or mel-frequency-spectral coefficients have widely differ-

ent variances. Nonetheless, the discussion that follows pertains to covariance

principal components since this method is easier to describe.

The first q principal components can be described in terms of the propor-

tion of variance in the measurement set for which they account. The precise

meaning of this quantity can be explained as follows: Let vi be the variance of

the jth measurement and ek be the variance of the kth principal component.

Let V •= vj be the total variance of the measurement set. It can be shown

that V -- =l ek. The quantity '=, ek/V is referred to as the proportion of

variance accounted for by the first q principal components.

Thus, the main purpose of principal component analysis is the same as

that of the cosine transformation: to rank the transformed variables by their

ability to capture coarse spectral shape features so as to reduce dimensionality.

However, the analysis is guaranteed to accomplish this goal for any data set

while the cosine transformation is not. See Glass [Glass 88] for a comparative

description of the two techniques.

In fact, using a least-square error criterion, principal component analysis

is the optimal dimensionality reduction technique. To be specific, assume an

original set of n data points, each represented by a vector of p measurements.

Let X be an n x p data matrix such that xii is the value of measurement j

on data point i. Assume that each point is linearly transformed into a vector

whose length is q, q < p and let Yik be the valu:e of the kth transformed variable

on data point i. This can be represented by the matrix multiplication Y =

XA where A is a p x q transformation matrix and Y is an n x q data matrix.

Since q < p, this represents a reduction in dimensionality. A reasonable way

to gauge the amount of information about the original measurement set X

that is retained by this process is to measure the accuracy to which it can be

approximated from the transformed variable set Y by back-transforming Y

to the original vector space. In particular, let X = YB be an n x p matrix
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representing the minimum squared error approximation of X from Y. Let i,,

be the value of measurement j on data point i in k. Thus, B is a q x p matrix

determined so as to minimize the quantity

n p

E E Z (X -ij'

over all q x p matrices. It can be shown [Johnson 88, p. 367] that the set of

q transformed variables that achieves the minimum E is the set of the first

q principal components. Furthermore, in that case E is proportional to the

variance not accounted for in the first q principal components. Thus, the

proportion of variance accounted for can be used to determine the accuracy of

the approximation.

Figure 2.1 illustrates for two sample spectra and for different values of q the

approximation obtained by back-transforming the principal components as dis-

cussed above. It can be shown [Johnson 88, p. 367] that the back-transformed

estimate of the vector of spectral coefficients is ATY + p, (I - ATA] where

A is the principal component transformation matrix, y is the vector of prin-

cipal components, p•, is an estimate of the mean spectral coefficient vector

and I is the identity matrix. The figure displays this estimate for a back-

transformation to the mel-frequency spectral coefficients. Filter outputs are

plotted at their center frequencies which are spaced in the mel domain along

the horizontal axis. The first spectrum was extracted from an /s/ and the

second from an /a/. In each figure, the solid line represents the original spec-

trum and the dotted line represents the approximation. As q is increased, the

approximations to the original spectra are improved. From these figures, it

appears that coarse spectral features are preserved while fine ones are not.

Note that principal component analysis is an optimal dimensionality re-

duction technique only in the sense of minimum squared error. It is possible

that the fine spectral information that is lost in the process is useful for dis-

criminating lexical labels. We discuss this point in more depth in Section 4.7,

where we discuss multiple discriminant analysis, a dimensionality reduction
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Figure 2.1: Effect of principal component dimensionality reduction. The mel-
frequency spectral representation is used. Filter outputs are plotted at their
center frequencies which are spaced in the mel domain along the horizontal
axis. Each solid line represents the original spectrum and each dotted line the
least-square approximation. Approximations shown for 3, 7, and 15 principal
components representing 86%, 94% and 98% of variance, respectively. (a)
Spectrum extracted from /s/. (b) spectrum extracted from /a/.
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technique designed to preserve information useful for discrimination. The dis-

tinction between the two techniques was noted in [Pols 73] and discussed in

depth in [Brown 871. In our work with MFSC's, we represent them with fifteen

principal components. These account for 98% of the variance so the loss of

information is probably not a major consideration. The hair-cell envelope rep-

resentation is represented by seven principal components accounting for 90%

of variance so the loss of information may be more of a consideration.
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Chapter 3

The Segment-Based HMM

Our system differs from frame-based systems usually used in HMM recognizers

in that the role of frames is played by acoustic segments of varying duration

that are generated by an algorithm that places boundaries at points of large

spectral change. In particular, these points are intended to define boundaries

between regions associated with different lexical labels, using the terminology

of Section 1.3. In this chapter, we justify our use of such a scheme, describe

the segmentation algorithm, characterize its performance, and present our so-

lutions to some problems that occur in using this algorithm for speech recog-

nition. Finally, we discuss how subword models are built within the segment-

based HMM framework. These models are used in the phonetic recognition

and word spotting experiments discussed in Chapters 4 and 5.

3.1 Previous Work on Phonetic and Variable-Duration Segments

The idea of making measurements on phonetic regions is not new. A few

examples of this include work done on recognition of vowels [Leung 89], frica-

tives [Key 87], and nasals and nasalized vowels [Glass 84]. In these cases, the

regions were determined manually.

Automatically determined segments have been used for isolated letter recog-

nition [Cole 86], connected digit recognition [Bocchieri 86, Bush 87] and in the
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stochastic segment speech recognizers mentioned in Section 1.3 [Ostendorf 89,

Zue 89a, Leung 92]. As we discussed in that section, these systems differ from

the HMM-based systems in that they perform segmentation and recognition

jointly, and thus are formally quite different from the system used in the

present work.

In fact, to our knowledge, only one hidden Markov model system using

variable-duration segments has been built. In [LeMaire 89j a segmenter based

on sequential hypothesis testing is used to determine points of large spectral

change at which segment boundaries are placed. The segmenter is described

in [Andr&Obrecht 88]. Preliminary results for digit recognition using the rec-

ognizer were promising.

A related approach, employing a variable frame rate, is described in [Peeling 911.

The measurements in this system were the same as in a frame-based system

but the frame sampling rate varied as a function of the local rate of spectral

change. The authors reported that the variable frame rate system outper-

formed the fixed-rate one.

Finally, we should point out that early work by IBM [Jelinek 76] modelled

the segment rather then the frame as the unit upon which acoustic scores

were computed. However, the hidden Markov models used in this work were

used to model a channel with discrete input and output symbols rather then

measurement PDF's. Thus, this system is not well-described by the speech

.recognition model of Section 1.3 that we use in our work.

An approach similar to that of [Jelinek 76] is described in (Meisel 91], using

a segmenter based on automatic neural networks. That paper reported good

results for a phonetic recognition task.

3.2 The Ideal Segmenter

To motivate the segmentation algorithm, we will introduce the concept of an

ideal segmenter. This concept is based on the assumptions that each word in

48



the vocabulary can be represented as a distinct sequence of lexical labels and

that an ideal transcription (i.e, a mapping between waveform regions and label

sequences) can be determined such that the acoustic quality of the waveform

region associated with each label is dependent solely on the label's identity.

Looked at another way, the waveform region associated with each label would

provide all the information relevant to identifying the label. The assumption

that such a transcription exists was introduced in Section 1.3. We will also

assume that a manual transcription comes closest to an ideal transcription. An

ideal segmenter would automatically produce a segmentation that corresponds

to an utterance's ideal transcription.

As we discussed in Section 1.3, the point of training models is to estimate a

PDF for the sequence of observation vectors associated with each lexical label.

With an ideal segmenter, this would be reduced to the problem of estimating

the PDF for the single observation vector associated with each occurrence of

a lexical label. Since, by assumption, this observation vector yields all the

information relevant to identifying the label, such a system would provide

the best possible discrimination of labels for a given lexical label inventory

and choice of observation measurements. In turn, since each word in the

recognizer's vocabulary can be represented as a distinct sequence of lexical

labels, such a system would provide the best possible word recognition given

these choices.

Evidence that an ideal segmenter would lead to better recognition perfor-

mance than a non-ideal segmenter is cited in [Ostendorf 89]. The recognition

rate of phonemic labels for the stochastic segment recognizer discussed in that

paper was higher when manual transcription was used to determine the seg-

ment boundaries of the utterances to be recognized than when an automatic

segmentation was used. In the automatic segmentation, segment boundaries

were placed less consistently for different tokens associated with the same tran-

scription label. Presumably, the automatic segmentation did not approximate

an ideal segmentation to the same extent as did the manual segmentation and
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this caused a deterioration in recognition performance.

For the remainder of the chapter, we will discuss an ideal segmenter based

on lexical labels consisting of phones. As introduced in Section 1.3, the term

phonetic region will refer to the portion of the waveform associated with a par-

ticular phone label. The segments produced by the segmenter will be referred

to as phonetic segments.

3.3 Rationale for Using Acoustic Segmenta-
tion

In the previous section, we discussed in broad terms the rationale for using

measurements made on phonetic segments as observation vectors. In this sec-

tion, we provide more detailed arguments for attempting to produce a phonetic

segmentation in a speech recognizer.

The first justification is that there is evidence that points of large spectral

change may be particularly rich in phonetic information about the identity

of certain consonants [Stevens 85, Stevens 861 so that measurements made at

these points will be found to be useful. The segmenter is designed to iden-

tify these points so that making these measurements is convenient within the

segment-based HMM framewo:k. In Chapter 4 we show that such measure-

ments can in fact be used to discriminate among stop consonants.

Use of phonetic segments may help in dealing with the problem of statisti-

cal dependence among frames in a frame-based system. Frame-based systems

compute the probability of observing a sequence of frames under the assump-

tion that adjacent observation vectors are statistically independent given the

current Markov model state. This has been shown to be a faulty assumption,

especially for long vowels for which adjacent frames are highly correlated. For

a good discussion of the problem, see [Brown 871. Both Brown [Brown 871 and

Kenny [Kenny 90] have suggested solutions to the problem within the HMM

framework, obtaining limited success. Digilakis [Digilakis 92] obtained some
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success in dealing the problem within the stochastic segment framework.

The consequence of the correla: on is that observation probabilities for

frames associated with long vowels tend to dominate the score computed for

the full utterance. Thus, for example, in an isolated word recognizer a word

like "zoo" may be recognized as "so" in the following scenario: The average

spectrum for the /u/ matches slightly better to the acoustic model for /o/

than to the /u/ model. At the same time, the uttered /z/ might match much

better to the correct model than it does to the second-best matching model,

/s/. Because the vocalic frames dominate the computed utterance likelihood,

the recognizer will output a word ending in /o/. Since there is no word whose

phonetic transcription is /zo/, it is likely that the recognized word would be
"so." In a system in which the lexical-acoustic models account for interframe

correlation, the poor match of the uttered /z/ to the /s/ model would over-

whelm the relatively small tendency of the recognizer to output /o/ and the

recognizer would respond correctly.

To overcome this problem, correlations between nearby spectra must be

modelled and/or adjacent acoustic segments should be as statistically inde-

pendent as possible. Phonetic segment systems can satisfy both these criteria

better than do frame-based systems. Theoretically, models for phonetic seg-

ment observation vectors which include short-term spectra can model correla-

tions between nearby spectra, although detail in the correlation structure will

be limited by the amount of training data available. The problem of statistical

dependence among frames associated with the same phone is due in large part

to the fact that spectra tend to change more slowly withir phonetic regions

than across phonetic boundaries. Because there is relatively little change from

one frame to the next, one frame's spectrum can be well predicted given the

previous frame's. A system based on phonetic segments reduces this interseg-

ment dependence by tending to place intersegment boundaries at boundaries

between phonetic regions. Thus, phonetic segments should partially alleviate

the problem of poorly modelled statistical dependence among segments.
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Finally, an HMM recognizer based on phonetic seginer.t can ye compu-

tationally cheaper than one based on frames. In continuous speech systems,

much of the computation is devoted to searching for the best sequence of lexi-

cal labels among all those sequences allowed in the lexicon. The computation

time required for the search is linear in the number of acoustic segments in

the utterance [Rabiner 83]. Because phonetic regions tend to be longer than

the typically used 10 ms frame, each utterance has fewer of them, leading to

computational savings. In our implementation, for example, the mean seg-

ment length is about 50 ms, so the segment rate is only 1/5 the typical frame

rate in a frame-based system. This advantage must be balanced against the

computation required for the segmentation itself, which is not a factor in a

frame-based system. We make a rough analysis of the computation required

for segmentation in Section 4.8.3 and show that it is small compared to the

time required for phonetic recognition. We should point out that the same is

not true of most stochastic segment models, unless they take steps to greatly

constrain the search for the optimal segmentation [Leung 90, Digilakis 921.

A rough analysis in the same section of the requirements for the stochastic

segment systems reported in [Leung 90, Digilakis 92] shows large differences

between the two approaches. The extra computation required for these sys-

tems compared to ours can be traced to the fact that these systems use a

large number of phone models for both segmentation and recognition while we

partition the two tasks and use the phone models only for recognition.

3.4 Segmenter Description

3.4.1 Overview of Algorithm

The goal of the segmenter is to produce an output as close to the phonetic seg-

mentation as possible, i.e., to generate segments that are aligned as closely as

possible to the phonetic transcription. Figure 3.1 depicts the training process.

The segmenter training set consists of utterances which have been phonet-
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Figure 3.1: (a) Multi-level segmentation (MLS) and (b) phonetic transcription.
Displayed times measured from beginning of utterance. The shaded regions
in the MLS are good segments. Those above them are merge segments, those
below are split segments. Good segments are determined using dynamic pro-
gramming to find the sequence of segment boundaries in the MLS that most
closely match the transcription boundaries. The MLS height is defined in
Section 3.4. A total of 57 phone labels were used for transcription.
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ically transcribed manually. The transcribed phone labels include those that

correspond to phonemes as well as to acoustically distinct allophones such

as alveolar flaps and glottal stops. The inventory also includes several sub-

phoneme labels such as stop closures and releases whose acoustic properties

are quite distinct from other labels. These were adopted in order to satisfy

the "separation" criterion among labels discussed in Section 1.3. A total of

57 labels was used. As discussed in Section 1.3, a higher degree of separation

in the acoustic space between segments associated with different labels should

lead to higher recognition accuracy.

To train the segmenter, a multi-level segmentation (MLS) [Glass 88) is

first computed for each utterance in the segmenter's training set. The MLS

organizes the utterance into a network of hypothesized acoustic segments. We

classify the set of acoustic segments produced by the MLS on a segmenter

training utterance into three types. "Good" segments are those whose time

boundaries match most closely to those of the transcription. These are found

using dynamic programming as described in (Glass 88]. The good segments

are displayed as shaded regions in Figure 3.1. We treat the sequence of good

segments as the closest approximation to a phonetic segmentation attainable

given the set of MLS segment hypotheses. "Split" segments are those which

are subsumed by good segments. These appear below the good segments in

Figure 3.1. "Merge" segments, in turn, subsume the good segments and appear

above them in Figure 3.1. Measurements useful for distinguishing among the

three segment types are made on each segment and their PDF's are modelled

by the training algorithm.

In the segmentation process, the same measurements are made on each

MLS segment and the probability that the segment belongs to each one of

the three segment types is estimated given the measurements. The segmenter

finds the sequence of adjacent segments in the MLS that minimizes a cost

function of the probabilities. The process is described in more detail in the

next three subsections. In Sections 3.4.2 and 3.4.3, we describe the training
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and segmentation processes and in Section 3.4.4 we present the results of

experiments used to determine the segmenter measurement set and to set

certain system parameters.

3.4.2 Training

The training algorithm is based on vector quantization (VQ) and operates as

follows: First, all measurements used to classify the segments as merged, split

or good are scaled so as to have equal sample standard deviations. Measure-

ment vectors of all three segment types are assigned to K clusters using a

variant of the Linde-Buzo-Gray top-down clustering procedure described in

[Lee 88) and introduced in [Linde 80] in which a cluster originally including all

the training vectors is repeatedly split into two according to a criterion that

maximizes the ratio of between-cluster and within-cluster spread. We refer

to K as the VQ codebook size. For each cluster k the probabilities Pk9 , Pk,

and Pk, that the cluster is associated with a good, split or merged segment

are estimated. To describe how these estimates are made, we must first define

some notation. Let Djk be the squared Euclidean distance between segment

j's measurement vector and cluster center k. Thus,

p
Ojk == E(Cki - Xji), 1 < k < K, 1< j < N (3.1)

i=l

where Cki is the value of the ith measurement at the cluster center, xji is

the value of the ith measurement made on the segment, p is the number of

measurements, and N is the number of training vectors.

For each segment, define an association function

exp(-Djk)fjk~ k < K,..
f 'k = exp(-Dk) 1< k< K, 1 <j < N (3.2)

that measures the degree to which segment j is associated with each cluster.

Clusters whose centers are close to that of the segment measurement vector

are assigned high association values compared to those whose centers are far

and the values are normalized so that their sum over all clusters is unity.
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Let Q be the set of indices of good segments in the segmenter training set.

For each cluster k, a measure of Fkg, the number of good segments associated

with it is

Fkg = fik, 1< k < K. (3.3)

Analogously, the values Fk, and Fk, can be defined for the split and merged

segments, respectively. Finally, for each cluster, the values Pk., Pk, and Pk.

are set according to:

PkX = FF x E g,s,m (3.4)Fk, + Fkg + Fk,.'

These values are used in the segmentation process described in the next section.

We have chosen to characterize the segment measurement PDF's using

vector quantization because the method makes few assumptions about the

form of the PDF's and is thus more more general than a Gaussian PDF model,

for example. This quality is particularly important for the segmentation task

because good segments correspond to phone labels of all types and the shape

of their PDF's is likely quite complicated. Similarly, split and merge segments

are also likely to have complicated measurement vector PDF's.

3.4.3 Segmentation

To describe the segmentation algorithm, we must first briefly outline the struc-

ture of the MLS. A more complete description is included in [Glass 88). The

MLS is organized hierarchically. The lowest level of the hierarchy consists of
"seed regions". These are represented in Figure 3.1 by the bottommost seg-

ments. Seed regions are determined in a manner such that boundaries between

them tend to represent points of large spectral change relative to the spectral

change within them.

To build the MLS, the pair of seed regions which are most like each other

acoustically according to a spectral distance metric are merged to form a new

segment which is said to be the "parent" of the pair. The MLS used in our work
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is computed using the algorithm described in [Glass 88] but uses a different

spectral distance metric for merging regions that is described in [Zue 90b].

The starting and ending times of the parent segment are the starting and

ending times of the left and right "children", respectively. The spectral dis-

tance between the children is referred to as the "height" of the parent segment.

The height is represented along the figure's vertical axis. Once the first pair

of segments has been merged, the process continues, merging the two pre-

viously unmerged adjacent segments most acoustically alike until the entire

utterance is represented by one topmost segment. Note that once two children

are merged neither of them are considered for future merges. Thus, each seg-

ment (except for the topmost one) has exactly one parent and each parent has

exactly two children, which are related to each other as "siblings." Finally,

note that Figure 3.1 represents only part of the complete MLS computed for

an utterance. Thus, the MLS's topmost segments are not displayed.

We use the MLS as the first step in the segmentation algorithm because

it has been shown that a path can usually be found through it consisting of

segments that align closely with the manual transcription [Glass 881. As we

stated in Section 3.2, the goal of the segmenter is to find a sequence of such

segments. The MLS provides a structure that constrains the search for this

sequence.

The segmentation algorithm operates by ascending from the seed regions

upwards in the MLS, starting with the pair of seed regions at the beginning

of the utterance, until it determines that the likelihood that the parent of a

sibling pair is a merge segment exceeds some threshold. When this occurs,

its children are both labelled good segments and appended to the sequence

of good segments already determined. The algorithm proceeds in this fashion

from left to right along the utterance until the end.

For each segment j, the odds (, that it is a merge rather then a good
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segment is used in the algorithm and is defined as

(1 = Q,,,/Q•g (3.5)

where Qi• denotes the estimated probability that the segment belongs to class

x, x E {g, s, m}. It is estimated as

- E=, Pk, exp(-DOk) (3.6)E'l = •= exp(-Dik)

where the Djk and Pk. are computed as described in Equations 3.1-3.4.

The algorithm is described in Table 3.1. It evaluates (j of the parent of

a segment instead of the segment itself to enforce a non-overlapping segmen-

tation. If we did not adopt this strategy then a segment's parent could be

considered twice for inclusion in the segmentation, once when ascending the

MLS from the left child and once from the right child. This could lead to a

child and its parent, which overlaps it, both being included in the segmenta-

tion.

3.4.4 Determination of Measurement Set and System

Parameters

We experimented with several measurement sets and codebook sizes in de-

veloping the algorithm. For these experiments, the segmenter was trained

using data from forty male speakers from the TIMIT corpus and tested with

a disjoint set of ten male speakers from the same corpus. As described in

Section 3.4.1, transcriptions of the utterances were used to label the segments

in the training and test MLS's as good, split or merged. These labels were

used for training the segmenter and for evaluating segmenter performance.

To choose a measurement set, A was set to 1. With this choice, the algo-

rithm produces the topmost segments in the MLS that are more likely to be

good than merged. Thus, this choice favors good segments over merged ones.

At the same time, it favors good segments over split ones because the top-

most segments likely to be good are used. We reasoned that this choice would
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Definitions:

b: the starting time of the current seed region,
vb: the seed region that begins at time b,
e.: the ending time of segment j,
S: the current sequence of segments in the segmentation,
T: the ending time of the utterance being segmented,
j: the current segment,

Aj: the parent of segment j,
LI: the left child of segment j,
Rj: the right child of segment j,

A: threshold that controls the number of segments produced
(: merge/good likelihood (see Eq. 3.5)

Algorithm:

b = 0; (Start at time 0)
S = { }; (Start with no segments)

StopRule: if b = T stop;
j = A,,b; (Ascend MLS)

MergeTest: if (j > A then
S = SL. R,; (Append to segmentation)
b = e,; (Move to beginning

of segment following j)
goto StopRule;

else
j = Aj, goto MergeTest; (Ascend MLS)

Table 3.1: Segmentation algorithm.
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maximize the number of good segments produced and that it would lead the

segmenter to produce about one segment per transcription label in the test set

since there would be no bias towards either split or merged segments.

The number of test utterance segments produced by the segmenter that

were labelled as good segments in the MLS was used as a criterion for evalu-

ating segmenter performance as a function of measurement set. This criterion

was used because it is a measure of how close the algorithm comes to producing

the ideal segmentation, in which all segments are good ones.

Figure 3.2 depicts the evaluation process. In the figure, an MLS, segmenter

output, and phonetic transcription are shown for part of an utterance. Cross

hatchings in the "northeast to southwest" direction indicate good segments

in the MLS. These are the segments that match most closely to the phonetic

transcription. Cross hatchings in the "northwest to southeast" direction indi-

cate segments in the MLS that were found by the segmenter. Good segments

found by the segmenter are cross-hatched with both patterns. Thus, for this

example, there were five good segments, out of which three were found by the

algorithm.

Our strategy for choosing a measurement set is based on the assumption

that merge segments will tend to have the greatest within-segment spectral

change and be the longest in duration while split segments will have the oppo-

site attributes. Good segments should fall in between. Thus, the measurement

set should be sensitive to within-segment spectral change an, duration. We

used the segment's height in the MLS in our measurement set to reflect spec-

tral change. As we stated in Section 3.4.3, the segment's height is a gauge of

spectral distance between the left and right segment children. The boundary

between children tends to be a point of relatively large spectral change. Thus,

the segment height should be sensitive to a large spectral change within the

segment. In particular, if the segment is a merge segment whose left and right

children have very different acoustic characteristics (e.g., a stop burst on the

left and a vowel on the right), the segment height should be quite large. To
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(a)

(b). . .. . .

(c) 0St 0  t

1.11 1.50
Seconds

Figure 3.2: Evaluating the segmenter. (a) MuGti-oeve] segmentation. Meanings
of cross-hatching patterns as in legend. (b) Segmenter output. (c) Phonetic
transcription. Displayed times measured from beginning of utterance. Good
segments in MLS correspond with transcribed phonetic regions shown in (c).
Segments in MLS determined by segmenter coincide with those in (b). For
this case, there are five transcription labels, out of which the segmenter labels
three as good. MLS height defined in text.
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represent duration, we used both left and right child durations in the mea-

surement set. For seed regions, which have no children, left and right child

durations were arbitrarily set to 1/2 the total segment duration. We used left

and right child durations instead of the total since they provide more detailed

information about the segment and thus are likely to be more useful in dis-

criminating among segment types. Note that the total segment duration is the

sum of the child durations so no information about segment duration is lost

by using the child durations.

Because the process of building the MLS continues until the full utterance

is spanned by a single segment, the MLS includes segments whose duration

is so long that they must be merge segments. We found that over 99.5% of

good and split segments are shorter than 500 ms. Consequently, almost all

those longer than 500 ms are merge segments. Thus, the segmenter labels all

segments longer than 500 ms as merge segments instead of determining class

probabilities with the vector quantizer. Since the vector quantizer is not used

to classify such segments, they are not included in the set of segments used

to train the quantizer. Our reason for excluding very long segments from the

vector quantization process is that it is preferable to allow a very few of these

segments to be mislabelled rather than to depend on the training process to

learn that almost all very long segments are merge segments. Also, by using

this tactic, cluster centers are not wasted on regions of the space that are

clearly merge segments. Because the clusters occupy a more compact space,

there should be less vector quantization errc and the quantizer should be

able to make finer distinctions among segments. For the same reasons, we

also labelled segments whose heights were above a certain threshold as merge

segments. Finally, since the segmenter does not compute the likelihood that

seed regions are good segments as opposed to merged ones, seed regions were

not included in the VQ training set.

Height and duration are not sufficient for classifying segments. This is clear

from Figure 3.3, which is a copy of Figure 3.1 and illustrates the good segments
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(a) .•

(b) n ' r i S p13

0.55 1.06
Seconds

Figure 3.3: Heights and durations of good segments. (a) Multi-level segmen-
tation. (b) Phonetic transcription. Displayed times measured from beginning
of utterance. The shaded regions are "good" segments. Note that heights of
good segments (denoted by the bottom horizontal segment edges) may be less
than those of split segments (e.g., the segment associated with /n/ is lower
than that of split segments associated with /i/). While no examples are shown
here, good segment heights may exceed those of merge segments. Likewise,
duration alone cannot be use to distinguish the segment types (e.g., the merge
segment occupied by the /i/ and /n/ labels is shorter than that occupied by
the /i/ label.
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in an MLS. For instance, the height of the good segment associated with the

/t/ and /n/ labels is less than that of split segments associated with the /i/

label. The problem is that thresholds of segment height and duration for

discriminating segment types are very dependent on the acoustic qualities of

the segment types. For instance, a segment consisting of a vowel and semivowel

might be distinguished from a good segment consisting of only a vowel by

its duration and by a slightly greater spectral change in the merge segment.

Conversely, a merge segment consisting of a stop burst and vowel might have a

similar duration to that of a good segment consisting of just a vowel but would

likely have a much greater spectral change. Additionally, the difference spectra

for the vowel-semivowel and stop burst-vowel spectral changes might have very

different shapes. To capture this variability, a more detailed measurement set

must be used. In our experiments to determine the best measurement set, we

considered measurements including

1. the first seven hair-cell envelope principal components (HCEPC's) aver-

aged over all frames in the segment's left child,

2. HCEPC averages over the right child, and

3. differences in right and left child HCEPC averages.

Finally, we experimented with another set of measurements, the mazimum

spectral deviations (MSD's), for capturing within-segment spectral change.

The maximum spectral deviation for each HCEPC reflects the maximum

amount that the principal component deviates from a straight line trajec-

tory over the course of the segment. Let hi, be the ith HCEPC for frame r

of the segment, T the number of frames in the segment and q the number of

HCEPC's used in the computation. The computation is:

1. For eachhi,,1 <i< q and 1 <r <T, set

S= hil + (hit - hi) 11  (3.7)
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We will refer to this as the linearly interpolated estimate of h,, since if

the trajectory of hi, between the first and last frames of the segment is

a straight line, hýi = hi,.

2. Determine the frame ? whose HCEPC's deviate maximally from the

straight trajectory according to the formula

q

arg max wi(hr - hir)'
7

where w, are weights that account for the fact that the scale of (hi, - h,.)2

is dependent on i, the index of the HCEPC. In particular, the scale in-

creases with i because, as we discussed in Section 2.3.3, higher-index

HCEPC's are related to finer spectral shape features and these tend to

vary more over the course of the segment than do lower-index HCEPC's.

Thus, the weights help ensure that deviations in the higher-index HCEPC's

do not dominate in determining the maximum-deviation frame. Ap-

pendix A describes the algorithm used to determine the weights.

3. For all i, 1 < i < q, compute MSDi as

MSDi = hi+ - hi+.

We also tested two related measurements. The maximum spectral devia-

tion RMS (MSDRMS) is defined as

7

MSDRMS = MSDI 2

i=1

and reflects the magnitude of the maximum spectral difference. The maximum

spectral deviation spectrum (MSDS) is defined as

MSDSi = hi+

and characterizes the spectrum on the frame with the maximum deviation.
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We hypothesized that the MSD coefficients would be useful in distinguish-

ing good segments for which there is relatively large but smooth spectral

change (such as those associated with diphthongs) from merge segments for

which there is large but abrupt spectral change (such as those associated with

a stop burst-vowel sequence). In the first case, we hypothesized that the val-

ues of the coefficients would be relatively low because the HCE trajectories

would be quite smooth and well-approximated by the linear model of Equa-

tion 3.7. In the second case, the abrupt change would presumably lead to large

oefficient values.

Table 3.2 summarizes the results of our experiments with different measure-

ment sets and codebook sizes. As stated above, the goal of these experiments is

to find the measurement set and codebook size that produces the largest num-

ber of good segments from a given set of utterances. The results were obtained

for the segmenter test set of ten male TIMIT speakers. In all cases, the left

and right child spectral measurements are based on the first seven HCEPC's.

These account for over 90% of the variance of the hair-cell envelopes and we

decided arbitrarily not to use a higher number in our experiments. For the

other measurement types, only the number of measurements that produced

the highest number of good segments is included in the table, since this is

the criterion used to evaluate segmenter performance. For example, the best

results with the MSDS coefficients were obtained when four were used.

The results are difficult to interpret in some cases because of interactions

among factors that are hard to explain. For example, sets (2) and (3) dif-

fer in the fact that the former includes the left child principal components

(PCL's) and principal component differences (PCD's) while the latter replaces

the PCD's with right child principal components, thus encoding the same in-

formation in a different way. The relative number of good segments in the two

schemes seems to be dependent upon K, the size of the codebook. A similar

phenomenon is seen in comparing sets (4) and (5), which differ in the same

manner. In general, the results seem to be quite sensitive to the codebook size.
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K _ _1[ Good I Merge Spht [Seg/LIG/LI
(1) PCL,-PCL7 , PCD,-PCD7 , 128 If 911 366 618 1.01 .49
DurL, DurR, H 256 I1 921 367 603 1.01 .49
(2) PCLI-PCL7 , PCD1 -PCD7 , 128 II 904 388 534 .98 .49
DurL, DurR, H, MSDRMS _ 256 I1 894 394 489 .95 .48
(3) PCLI-PCL7 , PCRI-PCR7 , 11281 884 401 491 95 1.47
DurL, DurR, H, MSDRMS 125611 923 381 527 .98 E.49

(4) PCLI-PCL7 , PCD,-PCD7 , 128 890 390 515 .96 "48
DurL, DurR, H, MSD1 -MSD 3  256 924 377 550 .99 j .49

(5) PCL,-PCL7 , PCR,-PCR 7, 128 918 391 478 .96 .49
DurL, DurR, H, MSD,-MSD 3 1 256 II 915 381 557 I .99 .499 I9
(6) PCLi-PCL7 , PCDI-PCD7 , 128 905 382 537 .98 .48
DurL, DurR, H, 256 947 374 564 1.00 .51
MSDS1 -MSDS 4  512 919 384 481 .95 .49

Table 3.2: Effect of codebook size and measurement set on segmentation. Re-
sults are for the segmenter test set, consisting of utterances from ten male
TIMIT speakers. K denotes number of clusters in codebook, Seg/L denotes
number of segments per label. GIL denotes fraction of labels that are seg-
mented into good segments. Measurements: PCL = left child hair-cell envelope
principal component averages, PCR = right child hair-cell envelope principal
component averages, PCD = differences between PCR and PCL, DurL = left
child duration, DurR = right child duration, H = height of segment in MLS,
MSDRMS = maximum spectral deviation RMS, MSD = maximum spectral
deviation, MSDS = maximum spectral deviation spectrum. There were 1870
transcription labels in data set. The merge/good likelihood threshold A was
set to 1.0. The row in boldface corresponds to the configuration chosen for use
in the segmentcr.
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Since we do not have a good explanation for this, these fluctuations might be

attributable to chance.

There also appears to be a positive correlation between the number of good

segments and the total number of segments. Thus, it is possible that if A were

adjusted so that each measurement set produced an equal total number of

segments, the number of good segments produced would show less variation.

From the table, it can be seen that the highest number of good segments,

947, was obtained with a codebook size of 256 and a measurement set includ-

ing left and right child durations, segment height, the first seven left child

HCEPC averages, the first seven HCEPC average differences between left and

right children, and four MSDS coefficients. Thus, we used this measurement

set in the segmenter. The ratio of good segments to transcription labels for

this choice is .51. Thus, for the segmenter training set about half of the tran-

scription labels are associated with good segments.

As predicted, a value of A = 1 led to roughly one segment produced per

transcription label, indicating that the algorithm was not biased towards either

merged or split segments with this choice. For building subword models we

used a value of A = .33 which led to 1.4 segments produced per label. We

discuss the reasons for this choice of A in Section 3.5, where we describe phone

modelling within the segment-based HMM framework.

3.5 Subword Modelling

In this section, we describe the training of subword segment-based HMM's.

These models were used in the phonetic recognition and word spotting ex-

periments described in Chapters 4 and 5, respectively. We specifically refer

to these as subword models rather than phone models because, as we discuss

below, models for phone pairs, which we will call biphones, were built as well.

The training set used to build these models consisted of 2150 utterances from

each of the 430 TIMIT male speakers and a total of 473 utterances from ten
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male speakers in the VOYAGER corpus.

The fact that the segmenter produces both split and merged segments as

well as good ones must be taken into account when training subword models.

We illustrate the problem in Figure 3.4, which depicts the segmenter's output

on part of an utterance. The arrows indicate the associations made between

the segments and lexical labels. As discussed in Section 1.3, the segments

associated with each label are used to train the label's HMM. A segment

is associated with a label if more than 1/2 the segment overlaps the label

or if more than 1/2 the label overlaps the segment. This rule is somewhat

arbitrary and its possible effect on system performance will be discussed further

in Section 3.8. One of its qualities, however, is that each segment is associated

with at least one label and vice-versa. Thus each segment and each label are

used in the training process.

We should note here that phonetic transcription labels will usually be rep-

resented using the International Phznetic Alphabet ([PA) and this represen-

tation will be used in displaying transcriptions (as in Figure 3.4). In the text,

we will distinguish transcription labels from acoustic models for them by de-

noting the latter with boldface ARPABET labels. However, this convention

will be overridden in some of the figures presented for the purpose of making

clearer illustrations. Table 3.3 displays the equivalences between the two sets

of labels.

Four types of associations are shown in the Figure 3.4. They are listed in

Table 3.4. The table's "Arrow configuration" column schematizes the config-

uration of arrows in the figure corresponding to each type of association. The

"Examples" column indicates the phone label(s) in Figure 3.4 that is pointed

to by the arrows in question. Finally, the "Segment type" column refers to

whether the segment(s) is actually a merge, good, or split segment, although

this information is not used directly in the training process.

In cases where one or more segments are associated with a single phone, the

sequence of segments so associated is used to train the model for that phone.
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(a) from the Charles

(b) f V Iam M tW•i t ia r T z(c)I V \ I A 1

.4 I

(d) * 4.1: V":

i * i . . * .,. . . , *1

AA
(e) -- i;:••

!'i.
... ..-... -

2.10 Seconds 2.73

Figure 3.4: Segmentation of an utterance. (a) Orthographic transcription. (b)
Phonetic transcription. (c) Associations between segmentation and phonetic
transcription, described. (d) Segmenter output. (e) Spectrogram (overlaid
with segment boundaries). Displayed times measured from beginning of ut-
terance.
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i i beat s s see w w wet
I ih bit i sh she r r red
e ey bait f f fee I I let
* eh bet 0 th thief y y yet
M ae bat z z zoo m m meet
o aa Bob i zh _igi n n neat
3 ao bought v v vice q ng sing
A ah but a dh thee Z ch church
o ow boat p p pea j jh jufe
u uh book t t lea h hh heat
u uw boot k k key 1 el bottle
r er Burt b b bee m em bottom
oa ay bite d d Dee n en button
o' oy Boyd g g geese " nx inner
,w aw bout p0 pci (*) ? q bottle
0 ax about tp tcl (*) epi (I)
I ix rabbit kl kcl (*) pau (t)

a. axr manner bV bcl (*)
Ui ux avenue dO dcl (*)

g* gc (*)
r dx butter

Table 3.3: IPA and ARPABET phones. First column is IPA, second is ARPA-
BET, third is a sample word. The stop symbols p, t, k, b, d and g are used to
transcribe stop burst and aspiration while the closure symbols pP, tP, kV, bV, d0 ,

Sare used to transcribe the stop closures. Special symbols: (*) closures, (t)
epenthetic silence, (t) interword silence.

Arrow Segment

Association ( configuration A Examples type(s)

one-to-one T a-, m, a, z good

many-to-one f, r, I split
one-to-many ,61 inerge

many-to-many __,,___,_, toe merge-split

Table 3.4: Types of segment/label associations. "Arrow configuration" column
schematizes the configuration of arrows in the Figure 3.4 for the corresponding
association type. "Examples" column indicates the phone label(s) in Figure 3.4
that is pointed to by the arrows in question.
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Segment sequence length
1 2 3 4+ Total

Label Phone 53.9 23.9 7.0 2.6 87.4
sequence Biphone 6.6 3.9 1.1 0.4 12.0
type Triphone 0.3 0.2 0.1 0.0 0.6

Total 60.8 28.0 8.2 2.9 100

Table 3.5: Segment/label associations tabulated over transcription labels, ex-
pressed as percentages. Computed from 89946 transcription labels in subword
model training set.

This is no different from a frame-based HMM, for which all associations are

many-to-one because each frame is shorter than the shortest phonetic region.

However, the existence of sequences of one or more segments associated with

a sequence of more than one phone label must be modelled as well. We deal

with this problem by augmenting our subword label inventory with phone label

sequences that are often involved in these one-to-many and many-to-many

associations. Thus a model for the biphone /&i/ is included in our inventory,

for example. A similar strategy was used in (LeMaire 891 to account for phones

often merged in their digit recognition task. According to our convention, we

will refer to this model's label as dh-ix. In general, biphone labels will be

hyphenated.

The need to include such models is a potential drawback of a segment-based

HMM approach because the typical frequency of occurrence of a sequence of

several labels in the training set tends to be much smaller than that of a

single label. Thus, there may not be enough data associated with some label

sequences for making good model parameter estimates. It is for this reason

that we biased the segmenter away from merge segments and towards split

segments. As we mentioned in Section 3.4.4, the bias led to 1.4 segments

being produced per transcription label.

Table 3.5 illustrates the extent to which segmenter variability must be

accolanted for in building a model inventory. It tabulates the percentages of
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labels involved in segment/label associations of various types as observed in

the subword model training set. Thus, for example, each biphone associated

with a single segment would count as two labels involved in a two-label/one-

segment association. As can be seen from the table, 12.0% of transcription

labels should be modelled as biphones and 0.6% as triphones. Thus, a total

of 12.6% of labels are involved in one-to-many or many-to-many associations.

The remainder of sequences are involved in either one-to-one (53.9%) or many-

to-one (33.5%) associations.

Note that the subword model training set, upon which these statistics were

cornoiled, includes utterances from the forty TIMIT speakers used to train

the segmenter and the ten TIMIT speakers used to set segmenter parameters.

Since the segmenter was trained to produce one-to-one associations, the results

might overestimate the probability of this type of association on new data.

However, as the utterances used to train and test the segmenter comprise less

thar 10% of the total subword model training set, this effect should be small.

Because of the small number of labels associated with triphones, we decided

to add only biphone models to the phone inventory. We will refer to instances

of Liphones that are involved in one-to-many or many-to-many associations as

mei ged biphones.

We did not build models for each biphone that could potentially be merged

be, ause the required number of models would have been very large, leading

to -rreat complexity in the phonetic recognition and word spotting systems in

wlch Lhe models were used. In fact, as shown in Table 3.6, out of 57 x 56 =

31ý2 potential biphones, 2190 were observed at least once in the training set.

Out of these, 803 were merged at least once. Thus, even if we devoted models

only to biphones that were merged at least once, using the reasoning that these

would be the most likely to occur in the test data, computation would have

been prohibitive.

To be included in the model inventory, a biphone had to meet two criteria.

First of all, the number of tokens of the biphone in the training set had to
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Potential Observed Observed
biphones biphones merged biphones

3192 2180 803

Table 3.6: Biphone merge statistics, Observed biphones refers to the number
of distinct biphone labels observed in subword model training set. Observed
merged biphones refers to number of these merged at least once.

exceed an arbitrary threshold of 25 so that there would be enough training data

for the model. Note that we used the total number of biphone tokens as the

threshold, not the number of merged tokens. As we discuss in Section 3.7, all

tokens of a given biphone were included in the training set for that biphone's

model, not only those tokens that were merged.

Since each biphone model is used to account for instances where a bi-

phone is merged, the second criterion for inclusion was the estimated fre-

quency of such an occurrence. Because relative biphone frequencies are prob-

ably vocabulary-dependent and the test data were drawn from the VOYAGER

corpus, biphone frequencies were collected from this corpus in making the es-

timate. In particular, 780 VOYAGER utterances from a set of sixteen female

speakers and 149 utterances from a set of three male VOYAGER speakers were

used to make estimates of relative biphone frequencies. The male speakers

used were a portion of the subword model training set and thus were disjoint

from speakers used in the test set. We assumed that there would be no great

difference between male and female vocabularies so that this set would provide

good estimates for the test speakers' biphone frequencies. These data will be

referred to as the language training set. For each biphone a, Merge(a), its

estimated merged biphone frequency is given by
Nca , Merges(a)

Merge(a) = Ncta) N (3.8)

where Nc(a) is the number of occurrences of a in the language training set,

Merges(a) is the number of merged occurrences of a in the subword model
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training set, and Ns(a) is the total number of occurrences of a in the subword

model training set. Thus, the biphone's relative frequency is estimated from

the language training set and the tendency of it to merge is estimated from the

subword model training set and the two are multiplied to obtain the estimate

of the total number of occurrences. All biphones whose estimates were above

an arbitrary threshold and which occurred often enough in the subword model

set were included in the model inventory.

In all, 84 diphone models were included along with the 57 phone models for

a total of 141 models. We estimated that these would model all but about 2%

of the segment sequences observed in the test set. Table 3.7 summarizes the

numbers of each type of model and Tables 3.8 and 3.9 enumerate the labels of

all the models used.

Phone Biphone Total
models models models

57 84 141

Table 3.7: Model inventory statistics.

In principle, the remaining sequences could have been modelled by labels

of the form *-x or x-* where x represents some phone label and * represents

a "wildcard" phone label. The first of these models would be trained by all

biphones whose right label is z and the second would be trained by all biphones

whose left label is x. In a recognizer or word spotter, these wildcard models

ao ax eh r em b k z ch kcl
ow uh ey er m p q s bcl pau
aw ux ae w en d v zh pci epi
aa uw iy y n dx f sh dcl
av ix axr el ng t dh hh tcl
ah ih I oy I I nx g th Ih gcl

Table 3.8: Phone model inventory.
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aa-axr b-axr dh-ax ix-n n-kcl q-ih t-r
aa-n b-ey dh-ix ix-nx n-m q-ix t-s
aa-r b-r dx-ix ix-q n-q q-iy tcl-b

ae-ng bcl-b dx-iy iy-ix n-tcl r-aa tcl-s
ao-I d-ax eh-axr k-s ng-kcl r-ah tcl-t
ax-I d-axr eh-n k-w nx-ix r-ax v-dh
ax-n d-ix eh-r kcl-k pcl-p r-eh w-ah

axr-ix d-iy epi-n I-ow q-aa r-ix w-ax
axr-r d-s er-ix m-dh q-ae r-iy w-eh
ay-ix dcl-d gcl-g n-d q-ah s-tcl y-ux
ay-tcl dcl-dh ih-axr n-dcl q-ay t-hh z-dh
b-ae dcl-jh ix-dx n-dh q-eh t-ix z-epi

Table 3.9: Biphone model inventory.

could be used to build models of words that include biphones that do not

have their own models. There would still be some ambiguity in determining a

word sequence from a subword model sequence. For instance, if a *-r model

is used to model both /ar/ and /or/, the words "cord" and "card" would be

indistinguishable. However, higher order semantic and syntactic information

could be used to deal with the ambiguity. While we would have utilized such

a strategy if we had applied the segment-based HMM to a large-vocabulary

problem, for simplicity we have chosen to ignore the problem of unmodelled

merged biphones in our work.

Figure 3.5 charts the tendencies of particular biphones in the model inven-

tory to be merged into a single segment. The tendencies are illustrated for the

thirty biphones most likely to be merged. For each biphone, the tendency is

expressed as the fraction of occurrences of the biphone in the subword model

training set that are associated with a single segment.

The labels most likely to be merged are often those that involve voiced

stop releases (e.g., b-axr), those for which it is difficult to find a boundary

between aspiration and frication (e.g., t-s and k-s), vowel-semivowe! combi-

nations (e.g., r-ax) and other pairs of phones which share properties so that
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z-dh
r-ax
t-hh
n-dh
d-axr

d-9
ng-kcl

rNx
oh-axr

76 axr-Ix
CIS bcf-b
0D .h-r
0 k-s

*~n-dot
ib axr-r

d-Iy
d-ax
v-dh
n-rn
n-d

y-ux
tcl-b
d-Ix

w-ax-
Ix-nx-
r-ah
b-.y

0.0 0.1 0.2 0.3 0.4

Fraction merged into single segment

Figure 3.5: Biphones frequently merged into a single segment. Barchart in-
cludes thirty labels in biphone inventory that have highest tendency of being
merged into a single segment. For each biphone, the tendency is expressed as
the fraction of occurrences of the biphone in the subword model training set
that are associated with a single segment.
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finding a boundary between them is difficult (e.g., z-dh, axr-r, and n-m).

Figure 3.6 displays examples of the three biphones that have the highest ten-

dency of being merged into a single segment. From left to right, the biphones

are /ts/, /zM/ and /ro/. We have used the IPA representations to identify

the biphones since they are used in the phonetic transcriptions shown in the

figure. The corresponding model labels are t-s,z-dh and r-ax. Note that the

rightmost figure also includes the merged biphone /md/.

In each of the displays, inspection of the spectrogram reveals acoustic cues

to the presence of a phonetic boundary. In the leftmost display, there appears

to be a double release for the /t/ that manifests itself as energy at low fre-

quencies. At the boundary between the /t/ and Is/ transcription labels, this

low-frequency energy is reduced while there is an onset of energy above ap-

proximately 7000 Hz. In the middle figure, the boundary between the /z/ and

the /b/ may be associated with a reduction of energy above 7000 Hz and the

onset of energy below 2000 Hz. Finally, in the rightmost figure, the boundary

between the /r/ and the /o/ is probably associated with the onset of nasal-

ization in the /o/ which manifests itself as a broadening of F1 and perhaps in

the discontinuity in F 4. These hypotheses are based on previous spectrogram

reading experience.

Thus, for these cases at least, the segmenter was not sensitive enough to

detect these boundaries. We have used only this segmenter in the phonetic

recognition and word spotting tasks discussed in Chapters 4 and 5. Thus, we

have no basis for estimating the effect a segmenter that deletes fewer bound-

aries would have on performance in these tasks. Future work in this regard

might be worthwhile.

Figure 3.7 charts the tendencies of particular biphones in the model inven-

tory to be associated with multiple segments. The tendencies are illustrated for

the thirty biphones most likely to be involved in many-to-many associations.

As can be seen by comparing this figure to Figure 3.5, there is a large overlap

between the biphones most likely to form one-to-many ;nd many-to-many as-
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(a) es " i z £ f ri ami5i

. . . .'.. . ....

(C) MI,•

tLU-

3.45 3.7 0.18 0.38 0.18 0.37
Seconds Seconds Seconds

Figure 3.6: Examples of biphones merged into a single segment. (a) Phonetic
transcription. (b) Associations between segments and phonetic regions. (c)
Spectrogram with segment boundaries overlaid. Displayed times are measured
from beginning of displayed utterance. The three examples from left to right
show the merging of biphones /ts/, /z1/ and /ro/ whose corresponding model
labels are t-s, z-dh and r-ax. Also note the merging of /mS/ in the rightmost
figure.

79



oh-axr
ay-lx
d-s
t-s

d-axr
b-ae
tcd-b

aa-axr
d-ly

b-axr
n-dh
bcl-b
m-dh

(U I-ow

q, q-ayco axrolx
CLoa axr-I

eh-r
t-hh
b-eyaa-r - i -l _ i I !ll

k-s
axr-r
v-dhy -u x ... . ..II.. . ..I' . ...
ly-ix

lh-axr
dcl-dh
z-dh

0.0 0.1 0.2 0.3

Fraction merged into multiple segments

Figure 3.7: Biphones frequently associated -"th multiple segments. Barchart
includes thirty labels in biphone inventory tlh.. have highest tendency of being
associated with multiple segments. For each biphone, the tendency is expressed
as the fraction of occurrences of the biphone in the subword model training
set that is associated with multiple segments.

80



sociations. However, more vowel-semivowel pairs appear among the biphones

with the highest tendencies of forming many-to-many associations. In general,

the boundary between transcribed regions in such pairs is arbitrary because

it is unclear where the acoustic 'nroperties associated with one phonetic label

end and the next one begin. In fact, in some cases, transcribers used a con-

vention of assigning 1/3 the syllable duration to the semivowel and 2/3 to a

vowel [Zue 92]. Thus, it is not surprising that the transcription and segmenter

boundaries do not line up in these cases. An example of this type is depicted

for the biphone /e,-/ in the leftmost display of Figure 3.8. The smoothness

of the formants makes the determination of a boundary quite arbitrary. The

segmenter finds a boundary at a point where high frequency energy rapidly

decreases rather then aL the transcription boundary.

The figure also displays examples of many-to-many associations for the

biphones /aYi/ and /ts/, which have high tendencies to form such associations.

In the middle figure, a short segment is produced at the beginning of the /aY/'s

phonetic region which captures the onset of voicing and another segment is

produced that spans the remainder of this region and the /i/ phonetic region

as well. Thus, for this example, the many-to-many association might best be

described as a sequence of a many-to-one association between the two segments

and the /aY/ and a one-to-many association between the second segment and

the biphone /aYi/ The rightmost figure is similar in that a short region is

found at the end of the /s/ phonetic region that captures the source change

between the fricative and the vowel. The segment preceding it spans both the

/t/ aspiration and the fricated portion of the /s/, similar to the one-to-many

association for the biphone Its! shown in Figure 3.6. Thus, many-to-ma-i

associations can be classified into two types: those due to the arbitrary nature

of the transcription boundary location for certain biphones and those that

can best be characterized as a combination of one-to-many and many-to-one

associations.

The need for biphone models distinguishes the segment-based HMM ap-

81



( a ) :W, ,"h", jV I I , j S A

(b)

(C)
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0.46 0.64 1.83 2.15 0.91 1.19
Seconds Seconds Seconds

Figure 3.8: Examples of biphones associated with multiple segments. (a) Pho-
netic transcription. (b) Associations between segments and phonetic regions.
(c) Spectrogram with segment boundaries overlaid. Displayed times are mea-
sured from beginning of displayed utterance. The three examples from left to
right display biphones /ea-/, /aYi/ and /ts/ whose corresponding model labels
are eh-axr, ay-ix and t-s.
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proach from both the frame-based HIMI and stochastic segment approaches

to speech recognition. While the relative lack of training data for these mod-

els may pose a problem, they ma-. be more appropriate units than phones to

model in some cases. In particular, the fact that it may be difficult for the

segmenter to find an acoustic boundary between two phonetic regions might

indicate that it is more natural to treat the two regions as a single acoustic

unit whose measurement PDF is a function of the identities of both phones. In

this sense, biphone models are similar to the context-dependent phone models

used in frame-based HMM's [Bahl 80, Schwartz 85, Chow 86, Lee 88).

3.6 Further Analysis of Segmenter Behavior

Table 3.10 reports the mean number of segments per sequence, mean duration

per segment and other statistics for segments associated with phone labels of

several different phonetic classes. The statistics were compiled for the subword

model training set. Segments associated with biphones are included as well.

From the table, on - can see that the number of segments per phone pro-

duced by the segmenter is related to the amount of spectral change typical

over the course of a phonetic segment for the particular phone. For example,

voiceless stops, which include often include burst and aspiration portions, have

more segments than voiced stops, which tend to be unaspirated. Likewise, un-

stressed vowels, which tend to have little spectral movement, have far fewer

segments than diphthongs, with other stressed vowels falling in between.

The effect of phone duration may play a role in this, however. For instance,

it migst be more reasonable for the unreduced non-diphthongized vowels to

have fewer segments per token than the voiceless stops, since the former tend to

be relatively steady-state while the latter are often associated with two distinct

acoustic events: a burst and an aspiration. However, there are fewer segments

per stop token. Thus, the fact that the vowels are longer than the stops may

account for the larger number of segments. Given that duration is one of
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Mean Mean Mean Number Number
segments segment sequence of of

per duration duration sequences segments
sequence (ms) (ms)

Voiced stops 1.1 26 29 3796 4108
Reduced vowels 1.2 38 47 6477 7987
Voiceless stops 1.3 39 50 6436 8342
Affricates 1.3 53 70 1307 1733
Voiced fricatives 1.4 50 67 4865 6596
Nasals 1.5 41 63 6415 9843
Semivowels 1.5 45 68 8455 12742
Closures 1.5 46 68 12442 18450
Aspirants 1.6 44 68 965 1510
Multiphones 1.6 60 98 5590 9081
Voiceless fricatives 1.7 61 107 6516 11383
Glottal stops 1.8 35 64 1273 2352
Unreduced vowels 1.8 56 98 17745 31211
Diphthongs 2.4 62 149 1903 4559
Overall 1.5 49 76 84185 129897

Table 3.10: Segmenter statistics by phone class compiled for the subword train-
ing set. The multiphone category includes biphones and triphones. Voiced
stops include both nasal and dental flaps. Unreduced vowels do not include
diphthongs. The results are ordered by mean number of segments per se-
quence.
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the measurements used in the segmentation algorithm, this would not be too

surprising. On the other hand, the fact that duration per segment is dependent

on phonetic type shows that the segmenter did not produce segments purely

on the basis of total phone token duration.

One statistic not shown in the table is that /f/ and /0/ have by far the high-

est average number of segments (2.5 for /f/ and 2.2 for /0/) associated with

them among the consonantal phones. This is because the spectrum is often

uneven over the course of tokens of these phones, causing segment boundaries

to be generated at points of spectral change. Figure 3.4 includes an example

of this for /f/.

Finally, note that the average number of segments per sequence is 1.5. This

is higher than the 1.4 segments per phonetic transcription label mentioned

in the previous section, because sequences are associated with biphones and

triphones as well as phones. Specifically,

Segments per sequence = Segments per label x Labels per sequence.

This formula explains any apparent discrepancy between the two numbers.

Note that although, as originally stated, the goal of the segmenter was to

produce ideal segmentation of one segment per transcription label, the seg-

menter tended to produce more segments for phones with greater spectral

change and longer duration. Given that there not always a one-to-one rela-

tionship between well-defined acoustic events and phonetic transcription labels

and that the measurements used to determine segments are based on spectral

change and duration, this result is not surprising. We have dealt with the

segmenter's variability by allowing the subword HMM's to have a structure

flexible enough to model it. The HMM structure is discussed in detail in the

next section.
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Figure 3.9: Phone/biphone model topology: S, and SF are initial and final
states, respectively. Dashed and solid lines are null and segment-producing
transitions, respectively.

3.7 Training the Subword Models

The general HMM topology for phone and biphone models is shown in Fig-

ure 3.9. In that figure, S1 and SF are initial and final states, dashed lines

represent null transitions, for which no segment is produced, and solid lines

represent segment-producing transitions. The key characteristic of this type of

model is that it has distinct branches, each one modelling tokens of a distinct

number of segments. Let K be the number of branches in a model. Then

for each k, 1 < k < K, there is a branch with k states. Each branch k,

1 < k < K - 1, models tokens of k segments since it allows exactly k segment-

producing transitions between initial and final states. For the remainder of

the section, we will refer to a token of k segments as having length k.

The Kth branch models tokens of length K or greater since it includes a

self-loop so that a token of any number of segments greater than or equal to K

can be modePed by this branch. In general, for K odd. the self-loop is placed
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on state (K + 1)/2 of the AKth branch, which is the middle state of the branch.

For K even it is placed on state K/2 + 1 of the branch. We put the self-loop

near the middle state of the branch because this state is trained by segments

that occur near the middle of the token and we presume that this is the most

acoustically stable region in the articulation of the phone or biphone. Thus,

it might be more appropriate for a single state to model successive segments

near the middle of a token through the use of a self-loop than it would be to

model them near the edges of the token.

The number of branches in each model was determined by the distribution

of the lengths of tokens used to train the model. Specifically, for each model, we

computed a histogram of token lengths. For each token length L, we computed

EL, the number of tokens whose lengths are greater than or equal to L. Let

N be the total number of tokens used to train the model. The largest L for

which EL > 0.2N was used as the number of branches in the model, K. In

other words, states in the Kth branch of each model were trained by at least

20% of the tokens in the training set associated with that model. In almost

all cases, token length frequency falls with token length so that each branch

is trained by at least as many tokens as used for the Kth branch. However,

for some models, particularly biphone models, there were insufficient training

data for some of the branches. We discuss solutions to this problem below.

Table 3.11 tabulates counts of the number of branches used in the models.

Table 3.12 lists each model and the number of branches it has.

Number of branches 1 2 3 4 1 Total
Count 18 100 21 2 141

Table 3.11: Numbers of branches - phone/biphone models.

The parameters to be estimated in each model include the null transition

probabilities, the self-loop probability and the state PDF parameters. While

these could all in principle be estimated with the forward-backward [Jelinek 763
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ax I hh 2 tCI-t 2 b-axr 2 ay-tcl 2
b 1 ih 2 r-iy 2 q-ih 2 dcl-jh 2
d 1 ix 2 aa-r 2 k-w 2 aa 3

dx 1 jy 2 r-eh 2 rn-dh 2 ae 3
epi 1 jh 2 axr-r 2 w-ah 2 ao 3

g 1 k 2 axr-ix 2 t-r 2 aw 3
nx 1 kcl 2 S-tcl 2 t-s 2 ay 3

dcl-d 1 1 2 k-s 2 er-ix 2 en 3
r-ix I m 2 d-iy 2 t-hh 2 er 3
r-ax 1 n 2 kcl-k 2 z-epi 2 f 3
dh-ix 1 rig 2 y-ux 2 r-ah 2 ow 3
d-ax 1 p 2 gdl-g 2 n-dcl 2 q 3
dh-ax 1 pcI 2 n-d 2 v-dh 2 th 3
d-ix 1 r 2 w-ax 2 t-ix 2 uw 3
q-ix 1 s 2 d-s 2 eli-n 2 ux 3

ix-rix 1 ski 2 n-rn 2 ax-I 2 aa-axr 3
n-kcl 1 t 2 pci-p 2 dx-ix 2 tcl-b 3
ix-dx 1 tCl 2 b-ey 2 q-ae 2 ay-ix 3

ali 2 uh 2 ix-ri 2 n-q 2 r-aa 3
axr 2 v 2 b-r 2 aa-n 2 I-ow 3
bel 2 w 2 dcl-dh 2 epi-n 2 ae-ng 3
ch 2 y 2 tel-s 2 d-axr 2 ao-l 3
dc) 2 z 2 eh-r 2 ax- n 2 b-ae 3
dhI 2 z h 2 q-ay 2 iy-ix 2 Oy 4
e h 2 bcl-b 2 ih-axr 2 dx-iy 2 pau 4
el 2 eh-a~xr 2 w-eh 2 q-ah 2

em 2 n-tci 2 q-eh 2 rix-ix. 2
ey 2 z-dh 2 ix-q 2 q-aa 2
gel 2 rig-kcl 2 n-dh 2 q-iy 2

Table 3.12: Number of branches in each model.
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or segmental K-MEANS [Rabiner 891 algorithm, the particular structure of

the models makes the training algorithm simpler. For I < k < K - 1, the

null transition probability for branch k is estimated as NkIN where Nk is the

number of tokens in the training set that have k segments and N is the total

number of tokens. For branch K the formula is the same except that NK is

the number of tokens of at least K segments. The self-loop probability a,, is

estimated as a,, = C,,/C, where s is the index of the self-looping state, C,, is

the number of times in the training set there is a self-loop and Co is the number

of times the state with the self-loop is visited. To compute these counts, we

note that for a token of K + J segments, J > 0, each of the K segment-

producing transitions between adjacent states is taken once, accounting for K

segments. Thus, there are J self-looping transitions. There must be J+ 1 visits

to state s, accounting for the J self-looping transitions and the one transition

to the next state. Thus, if C is the set of all tokens in the training set that

are of length K or greater and K + Ji is the number of segments in token i,

ZiEPC Ji

E=EC(Ji + 1)
Finally, to estimate the state PDF parameters, we use the fact that the position

of each state in the model uniquely determines the segments used to train it.

Specifically, each branch k, for I < k < K - 1, is trained only from tokens

of length k and the jth state in the branch is trained from the Jth segments

of these tokens. For example, in Figure 3.9 the right state of the second

branch is trained by the second segment of each token of length two. For

branch K, the self-loop makes the association between segments and states

less straightforward but still deterministic.

In using this topology, we have made the assumption that segments from

tokens of different lengths and different positions in the token are acoustically

distinct. Thus each state should be trained from segments in a particular

position from tokens of a particular length. For example, the segment in a one-

segment token of /y/ is likely to be have greater duration and spectral change
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than either of the segments in a two-segment token of /y/. Additionally, the

two segments in the two-segment token are likely to be different from each

other acoustically since the first segment occurs at the start of the token and

the second one at the end of it. These segments might be acoustically distinct,

especially for a phone like /y/, over which there is a large spectral change.

There are a number of other topologies that could account for variable

token lengths which do not make this assumption. We have not explored

these alternatives.

We took special measures for training many of the biphone models since

the number of merged biphone tokens available for training was judged to

be insufficient. Thus, we added tokens to the training set that consisted of

segments in the multi-level segmentation that were aligned with the biphone

label but were not merged by the segmenter. Figure 3.10 illustrates two such

tokens, which are represented by cross hatched segments in the multi-level

segmentation.

These tokens were used to train the one-state branches of the ix-n and r-ix

biphone models even though they were not produced by the segmenter. We

refer to the tokens added to the training set in this way as matched biphone

tokens. In general, for each utterance that included in its transcription the

biphone to be augmented, the segment whose start and end points were closest

to those of the biphone transcription boundaries was added to the training set.

Thus, letting the start and end points of segment i be Sib and si, and letting

the start and end points of the biphone label be tb and t, the segment was

found for which I t6 - Sib I + I t, - Si, I was minimized and this segment was

used to augment the training set for the biphone. In general, to augment the

number of n-segment tokens so as to train the n-state branch of the model, a

similar metric was used to find the sequence of n segments in the MLS that

aligned best with the biphone label.

Because the matched biphone token segments are not produced by the

segmenter, they may not be representative of the merged biphone segments
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Figure 3.10: Augmenting the training set for a biphone model. (a) Train-
ing utterance multi-level segmentation. (b) Phonetic transcription. Shaded
segments are produced by segmenter. Cross hatched segments are matched
biphone tokens used to train models ix-n and r-ix.
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being modelled. Thus, there may be a tradeoff between the benefit of increased

training gained by adding these segments to the training set and the potential

disadvantage of adding unrepresentative training data. We dealt with this

issue by augmenting the training set by just the number of tokens needed to

bring the total number of tokens used for training a branch of a biphone model

to at most 25, an arbitrarily chosen threshold. Thus, for example, if there were

originally M tokens in the training set for training a particular branch, then if

M < 25, at most 25 - M matched biphone tokens were added to the training

set. The matched tokens added were those whose segment boundaries matched

most closely to the biphone transcription boundaries according to the distance

metric introduced in the last paragraph. In the future, it might be useful to

conduct experiments to determine whether the addition of matched segments

was beneficial, or whether even more of them should have been added, using

a higher threshold than 25.

We also used matched tokens to augment the training set for the oy model.

In particular, there were fewer than 25 instances of /oY/ associated with ex-

actly one segment. Thus, we used matched tokens of exactly one segment to

augment the training set for that model.

3.8 Summary and Discussion

In this chapter, we have described the segment-based HMM, which consists of

an algorithm for producing acoustic segments and a set of HMM's for acous-

tically modelling sequences of these segments.

We have shown that while the stated goal of the segmenter is to produce

one segment per transcription label, for our implementation this occurs for

only about half the transcription labels. Tokens of phones which tend to be

long or have large spectral change within their transcribed boundaries tend

to be associated with a larger number of segments. Conversely, certain pairs

of phones tend to be merged into single segments because of the difficulty in
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finding an acoustic boundary between phonetic regions.

Because the segmenter is not an end in itself but is a component of a speech

recognition system, it is difficult to assess it without using it in a recognition

task, which we do in the next two chapters. Also, we are unable to assess

the effect that the segmenter's deviation from its intended behavior has on

recognition results because we use only this segmenter in our work. However,

we do find it encouraging that the deviations from intended behavior tend to

be systematic and can usually be explained using acoustic-phonetic principles.

Systematic behavior is easier to model than random behavior.

To improve the segment-based HMM, it would be worthwhile to optimize

certain parameter settings and to investigate the validity of several of our

assumptions. For instance, the number of segments produced per label was

chosen arbitrarily to be 1.4 rather than 1.0 so as to reduce the number of

merged biphones. Likewise, we made arbitrary choices in determining the

inventory of subword labels, the minimum training data requirement for each

model, the model topologies, and the rule for associating segments to labels.

While we have provided reasons for these choices, we have not tested the effect

of making different ones. For instance, it might yield better results to train

the subword models automatically within the HMM framework as described

in [Jelinek 76] instead of using our arbitrary association rule, which relies on

the phonetic transcription for associating segments with labels.

More fundamentally, a segmenter could be built using an alternative model

to the ideal segmenter described in Section 3.2. In particular, the justifica-

tions of using variable-length segments instead of frames, i.e., statistical inde-

pendence among segments and a better framework for discriminating among

labels, could be formalized in a mathematical model that could be used to

determine a good strategy for segmentation and a good subword unit inven-

tory. Ideally, such a model would include training set size as a parameter

since for larger training sets, there would be less of a problem in training

biphones and larger units so that it might be appropriate to produce longer
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and fewer segments corresponding to the larger units. The model would also

have to account for the interaction of measurement set with discrimination

power and segmentation. For example, a measurement set that does not take

into account within-segment spectral dynamics might be appropriate for short

segments or frames but not for larger segments within which there is greater

spectral change. Such a model would avoid the ad hoc assumptions about the

inventory of subword units made here. However, due to the complexity of the

problem, building such a model might be difficult.

In our work, we have chosen to separate segmentation from recognition

both because we believe that the tasks are conceptually different and so as

to simplify the experimental paradigm. Another approach would be to inte-

grate the segmenter more fully into the recognizer, as is done in the stochastic

segment models outlined in [Ostendorf 89] and [Zue 89a]. T'he resulting seg-

mentation could still be used in an HMM framework so that this approach

would not be the same as adopting a stochastic segment model.

Finally, variable-length segments could be used within a recognizer that

makes measurements on varying time scales. Measurements made on different

scales might provide complementary information. For instance, measurements

on both fixed-length frames and variable-length segments could be combined,

the former useful for modelling events requiring fine temporal resolution and

the latter useful for modelling more long-term phenomena such as formant

trajectories over the course of a vowel or even pitch trajectories over the course

of a syllable. Unlike the frame- or segment-based frameworks, this approach

would entail measurements made over regions of the waveform that overlap

in time. Thus, much attention would have to be paid to the problem of

statistical dependence among measurements. However, if this problem were

dealt with satisfactorily, the multi-scale framework could yield improvements

in recognizer performance. Some proposals and initial work on this subject

appear in [Digilakis 92].

In summary, there are many alternatives to those we have chosen for imple-
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menting a segment-based HMM. However, in any implementation, the designer

would have to deal with the problems discussed in this chapter: determining

a criterion for optimizing segmenter performance, developing a segmentation

algorithm, and dealing with segmenter variability. In the next chapter we deal

with another problem that would be faced in any implementation: that of

determining the acoustic measurement set that characterizes each segment.
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Chapter 4

Acoustic Modelling of
Segments

This chapter has three major aims: to investigate how acoustic-phonetic knowl-

edge can be represented in the set of measurements made on a segment, to

compare the effectiveness of different measurement sets for phonetic recog-

nition, and to establish the segment-based HMM as a feasible alternative to

existing speech recognition approaches.

The choice of a measurement set for a variable-length acoustic segment

is more complex than the choice for a fixed-length frame. In a frame-based

system, the observation vector represents the spectrum, which is assumed to be

stationary over the course of the frame, and typically includes measurements

that represent spectral change in the frame's vicinity, e.g., [Gupta 87, Lee 88,

Rabiner 89, Paul 91]. In a segment-based system, stationarity can no longer

be assumed. Thus, spectral changes over the course of the segment must

be modelled. Another important difference between frames and the acoustic

segments we use is that, as we discussed in Chapter 3, segment boundaries

may be good places around which to make measurements useful for phonetic

discrimination while frame boundaries are generated periodically, independent

of the signal. Thus, measurements made near these boundaries should be

considered as well. Finally, there may be insufficient training data to provide

good model parameter estimates if a large number of measurements is used.
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Thus, techniques to reduce the dimensionality of the observation vector might

be more important in a segment-based system than a frame-based one.

While determining the measurement set for a segment may be more com-

plex, a segment-based system may also be a more convenient framework for

representing acoustic-phonetic knowledge. In this chapter, we investigate how

segmental measurements represent knowledge and how the representation can

be improved. In particular, we

1. develop a regression model to predict formants from the MFSC's, eval-

uate the model fit with graphical techniques and show that non-linear

transformations of the spectral coefficients can greatly improve the fit,

2. develop a method for clustering within-phone covariance matrices, show

that the matrices cluster well by manner of articulation and use this fact

to develop a refinement of multiple discriminant analysis that uses the

clustering to produce manner-specific discriminants,

3. examine the relationship between the discriminant functions determined

using this technique and distinctive features and show that for vowels

there is a strong relationship between the two, and

4. show that measurements made just outside the segments associated with

stop consonants contain information that allows discrimination of the

stops.

To gauge the relative effectiveness of different measurement sets, we com-

pare results on a phonetic recognition task. We show that performance can be

improved substantially when measurements made just outside the one being

modelled are added to the mcasuremcnt set. Finally, we show that the phonetic

recognition performance obtained by the segment-based HMM is in the range

of that reported for other a,)proaches of similar computational complexity.
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4.1 Previous Approaches

Measurement sets that have been used in segment-based systems can be classi-

fied into three types, which we will refer to as time-frequency, boundary-based

spectral, and feature-based schemes. In some systems, hybrids of these are

used.

Each segment in a time-frequency scheme is modelled as a sequence of a

fixed number, MA, of frames, where MA may vary with the model's lexical

label A. If each frame's spectrum is represented by p coefficients then the

observation vector of each segment is of length pMA. To account for vari-

ability in segment duration, a mapping is effected between frames of each

segment in the test utterance and those of each segment model so that the

number of frames represented in the test utterance segments and segment

models are equal. The mapping method varies among different implemen-

tations. Examples of time-frequency schemes include systems described in

[Bocchieri 86, Bush 87, Ostendorf 89, Digilakis 921. The acoustic model in

these systems is closest to that of frame-based HMM's in that most or all of

the test utterance frames are used directly in computing the acoustic score.

Thus, in both types of system, the signal is modelled as a sequence of short-

term spectra, with no focus on segment boundaries.

In boundary-based schemes, spectral measurements are made at fixed loca-

tions relative to segment boundaries. The measurements might be frame-based

or averaged over several frames. For example, [Leung 92] divides each segment

into three equal-duration portions and represents each segment as the observa-

tion vectors averaged over each portion. In [LeMaire 89], the center frame and

interframe differences at segment edges are used. In [Meisel 91], combinations

of boundary-based measurements are used.

The distinction between the time-frequency and boundary-based schemes

is in some sense arbitrary. It could be argued that boundary-based schemes

are time-frequency schemes that use a simple mapping between test utter-
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ance and model frames, i.e., the frames are mapped based on their positions

relative to segment boundaries. However, we make the distinction because

the boundary-based scheme characterizes each segment with measurements

made at particular points relative to segment boundaries rather then at nearly

uniformly spaced points throughout the segment. One practical difference be-

tween the two approaches is that there tend to be fewer measurements made in

boundary-based schemes. Making fewer measurements could be advantageous

if the boundary-based measurements capture all the information necessary for

discrimination since it alleviates the training problem. However, if the extra

measurements made in the tinw,-frequency scheme contain useful information,

they may outperform boundary-based schemes.

Feature-based schemes use measurements that are often made over the full

segment and tend to be more heterogeneous than those made in either of the

other schemes. Examples of their use include the alphabet classification task

described iii [Cole 86] and the recognizer described in [Zue 89aJ. In (Bush 871,

the segment's peak low-frequency energy and duration and measurements of

formants are included along with the time-frequency measurements so that this

system uses a hybrid of time-frequency and feature-based schemes. Finally,

our segmenter, described in Chapter 4, uses a feature-based scheme, including

measurements such as the maximum spectral deviation over the course of the

segment.

The distinction between boundary- and feature-based schemes is somewhat

arbitrary in that the features of the latter scheme are often based on tran .[or-

mations of spectra measured at particular points in the segment. For instance,

the features in [Zue 89a] include centers of gravity of hair-cell envelopes mea-

sured at particular instants. Thus, the two representations rray contain the

same information while using seemingly very different measurement sets. We

make the distinction, however, because the two approaches represent differ-

ent philosophies. In a feature-based scheme, the system designer incorporates

his/her view of the set of useful measurements more directly than in the other
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two schemes, either by specifying the set of measurements used as in [Cole 86]

or by specifying families of measurements and using automatic techniques to

choose particular measurements from these families as in (Zue 89a].

For our work, we have chosen to rely on boundary-based measurements.

These are simpler to implement than time-frequency measurements in that

they do not require a function for mapping between test and model frames.

Also, they should be able to take advantage of the fact that segment boundaries

are supposed to be landmarks about which to make measurements useful for

discrimination. We have chosen not to use a feature-based scheme mainly

because the heterogeneity of measurements makes it more complex to develop

such a scheme and to gain insight into system performance. Additionally,

we were encouraged by the performance of the boundary-based measurements

of [LeMaire 89] in a segment-based HMM to try a similar scheme. Finally,

we show below that transformations of boundary-based measurements can be

used to approximate formants and vowel distinctive features, underlining the

fact that for some types of features the distinction between the two schemes

is arbitrary.

4.2 The Baseline Measurement Set

Our first phonetic recognition and word spotting experiments were run with

a measurement set similar to that used in fLeMaire 89]. We used this set to

develop the software for phonetic recognition and word spotting and to produce

an initial set of results for both tasks. Thus, we term this the baseline set.

In the following description of the set, b is the index in the utterance of

the segment starting frame and e is that of the ending frame. The set includes

fifteen measurements:

1. the first seven hair-cell envelope principal components (HCEPC's)

measured at frame [(b + e)/2], the middle frame of the segment,

2. the first seven HCEPC differences measured at the right edge of the
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segment between frames s, and s, + 1, i.e., the first seven components

of the vector h,+, - h,, where hi is the vector of HCEPC's measured at

frame i, and

3. segment duration.

We used just the first seven HCEPC's since, as discussed in Chapter 3,

they account for over 90% of variance. The right edge differences are used

to measure spectral change at the segment edge, which are likely to be rich

in discriminatory information, as discussed in Chapter 3. Finally, duration is

included since it is known to be a valuable measurement for phonetic discrim-

ination [Klatt 76].

4.3 Within-Segment Measurements Based on
Mel-Frequency Spectra

For the remainder of this section, we describe measurements based on mel-

frequency spectral coefficients (MFSC's) and their principal components (MF-

SPC's). As discussed in Section 2.3, the MFSC's are based on a 25 ms Ham-

ming window advanced 5 ms each frame. In the phonetic recognition experi-

ments described in Section 4.8.3, we investigate the effect on performance of

including different subsets of these measurements. We used the MFSPC rather

then the HCEPC spectral representation for most of the phonetic recognition

experiments because it is probably better suited to a Gaussian PDF model, as

we discuss in Section 4.8.3.

To characterize within-segment dynamics, we measured the spectrum at

three places within the segment:

1. The beginning of the segment was characterized by the segment's second

frame MFSPC's. We will refer to this measurement set as the beginning

MFSPC's (BMFSPC's). We used the second frame rather then the first

so as to reduce the influence of the preceding segment since the purpose
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of the BMFSPC's is to model the within-segment spectrum. We chose to

use a single frame rather then averaging several frames, as in (Meisel 911

and [Leung 89], so as not to "smear" the spectral representation by av-

eraging it over a long period. In any case, the Hamming window acts to

average the spectrum so as to reduce the effects of signal non-stationarity

on the measurements.

2. The middle of the segment was characterized by the segment's middle

frame's MFSPC's (MMFSPC's).

3. The end of the segment was characterized by the segment's second-to-

final frame MFSPC's. These will be referred to as End MFSPC's (EMF-

SPC's).

4. The MFSPC's averaged over the full segment were used as well. These

will be referred to as average MFSPC's (AMFSPC's). We reasoned that,

since they take the complete segment into account, these might charac-

terize a segment better than measurements made at a specific location.

Also, the relationship between the AMFSPC's and the other three sub-

sets might provide information about the within-segment dynamics. For

example, if the average spectrum resembled the spectra measured at the

beginning and middle of the segment to a greater extent than that mea-

sured at the segment's end, it would suggest that the segment spectrum

was relatively constant and then changed suddenly at the end.

All of these measurement sets used the first fifteen MFSPC's to represent

the spectra. These account for over 98% of the variance in the training set's

MFSC's. There is evidence that recognition performance tends to level off at

around this number of spectral principal components (Brown 871 or MFSC's

[Digilakis 92]. By way of comparison, Lee (Lee 881 used twelve and Digilakis

[Digilakis 921 used eighteen mel-based cepstral coefficients in their work.
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For each of the four within-segment spectra described above, we also con-

sidered the measurement log E1, exp(MFSCi) where MFSC, is the ith MFSC.

This was added to represent total energy and its form is based on the fact that

the MFSC's are log energies. We will refer to this as the frame's energy. The

begin, middle, end, and energies will be abbreviated as BENGY, MENGY,

EENGY, and AENGY.

4.4 Formant Estimates Based on the Mel Spec-

trum

4.4.1 Motivation

As stated in Chapter 1, one of our key goals is to to use exploratory data

analytic techniques to learn how acoustic-phonetic knowledge is represented

in speech recognition systems and how the representation can be improved.

This is the prime motivation behind the work presented in this section, in

which we develop a multiple regression model to estimate formants from mel-

frequency spectral coefficients.

The problem is of interest because formants play an important role in

theories of speech production, perception and characterization. A sampling

of the work done in perception and characterization includes studies of vow-

els [Peterson 52, Pols 73, Carlson 75, Klatt 82], semivowels [Espy-Wilson 87],

fricatives [Soli 811, and stops [DeLattre 55]. Since it is believed that formants

are important for phonetic ýiscrimination, a good measurement set would pre-

sumably represent them. By building a regression model, we hoped to learn

the form of this representation for MFSC's.

Specifically, if formants could be modelled well as linear combinations of

MFSC's, there would be no need to include them in the recognizer's measure-

ment set. If they were indeed important for discrimination, multiple discrim-

inant analysis, which finds linear combinations of measurements that maxi-

mize discriminatory power, would presumably "discover" them. This would
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also hold true for a system that used full within-class covariance matrices to

model the state PDF's. Decision boundaries in such a system can be arbitrary

hyperplanes in the measurement space (Duda 73, pp 131-1341. The bound-

aries thus include hyperplanes that separate classes based on their formant

measurements.

Conversely, if the linear model is poor, a system based on multivariate

Gaussian models might benefit from the explicit use of formants in the mea-

surement set. If phonetic discrimination is strongly related to differences in

formant frequencies among different classes then adding the formants directly

to the measurement would tend to make the decision boundaries more linear

in the space used by the classifier. Thus, the classifier could have a more ac-

curate model of the decision boundaries and could potentially perform better.

We show below that the linear model is indeed poor.

Given this fact, a straightforward way of learning whether it is useful to

add formant estimates to some other spectral representation would be to add

the estimates of a formant tracker to the measurement set. Bush and Kopec

[Bush 871 did exactly that and achieved no improvement in their digit recog-

nition results when a formant tracker was added to a measurement set based

on LPC spectra. The negative result was attributed to the fact t- : there was

likely a strong correlation between the spectra and the formants. However,

LPC analysis is designed to model vocal tract resonances (Atal 711 and we

believed that the same results might not apply if the MFSC spectral represen-

tation was used.

Another reason there was no improvement might be that formant track-

ers are unreliable. Bush and Kopec point out that formants are "notoriously

difficult to estimate reliably", and cite [Schafer 77] as a reference for this state-

ment. In [Pols 73] and [Broad 89] this difficulty is pointed out as well. One

problem is that formant trackers typically label formants explicitly. This could

lead to catastrophic errors. For example, if F2 is 1000 Hz but the spectral peak

associated with it is missed by the tracker, then the peak associated with F3
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may be labelled as F2. Also, formant trackers might exhibit unpredictable

behavior where there is not much formant structure, such as in fricatives.

For these reasons, we did not use a formant tracker directly for adding

formant information to the recognizer. Instead, we built a model to predict

formants from MFSC's that involves non-linear transformations of the MFSC's

and used this model to predict formant values for use in the recognizer. As

we discuss below, the model has certain limitations. However, we believed it

to be superior to a formant tracker for use in a speech recognizer because, by

not explicitly labelling formants, it avoids the problems mentioned above.

Also, from an engineering point of view, it would be unwieldy and compu-

tationally expensive to add a separate set of features to the MFSC's for use

in formant tracking. Thus, a mc~del based on MFSC's is superior from this

standpoint as well.

As we show in Section 4.8.3, addition of the formant estimates does not

lead to a large improvement in phonetic performance. Nevertheless, the model

building process is of interest in its own right. The poor performance of the

linear model is an interesting result since it appears to contradict previous

work that is similar to ours [Broad 891, as we discuss in Section 4.4.3. Also,

we show that by including nonlinear transformations of MFSC's suggested

by knowledge about the relationship between them and formant frequencies,

the model can be greavly improved. This represents a novel approach to the

problem.

4.4.2 Building the Model

We first built a multiple regression model to estimate F2 from the 15 MFSPC's.

We will describe in detail the process of building this model and then briefly

present results obtained for a model of F1, since the process was identical.

In general, a multiple regression model for predicting a response variable
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y from a vector of regressors (xI, X2,. xp) is of the form

P

S =ao + Eaix, (4.1)
j=1

where j is the estimate of y given the regressors. The regression coefficients

ao, at ... ap are determined from a training set of n vectors (xil, Xi2, . I, xi, y,),

1 < i < n. It is assumed that the points are statistically independent of each

other. The ordinary least-squares multiple regression method that w, use

determines the coefficients so that the mean squared error (MSc.) I F (y, -

9X)2 is minimized. See [Myers 88] for details on the procedure.

In our case, the regressors were the MFSPC's and the response variable

was F 2. Our training set consisted of the five phonetically balanced ('-sx")

sentences from each of 23 male TIMIT speakers. We used a formant tracker

provided with the ESPS signal processing package (released by Entropic Sys-

tems Inc., Washington, DC) to estimate formants Fk and bandwidths Bk,

1 < k < 4. Formant estimates were produced with a frame advance of 10

ms. According to the ESPS reference manual, the tracker uses LPC analysis

to estimate spectral resonance frequencies and enforces continuity constraints

on formant frequencies with dynamic programming. We retained every tenth

frame in the training set. Intervening frames were removed to reduce the sta-

tistical dependence among vectors 'In the training set that would have resulted

from retaining sequences of adjacent frames.

It might seem contradictory to use formant tracker estimates as response

variables given the problems we have attributed to them. However, as we

discuss below, we only used the estimates from portions of speech where the

formants are well-defined and so the estimates should be reliable.

Because we were interested in estimating formant frequencies in voiced sec-

tions of speech where they are well-defined, we only retained frames for which

B1 < 400 Hz and B2 < 300 Hz. These values were arrived at by inspecting

a scatter plot of B1 and B2 (Fig. 4.1) and noting that the density of points

dropped off greatly outside the rectangle defined by these values. We inferred
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from this that voiced speech tended to fall within the rectangle and unvoiced

speech outside. In retrospect, these values seem very high for vowels in light

of acoustic theory [Stevens 87]. Nonetheless, we used them in our work.

About 60% of frames had values of B, and B2 that fell within the rectangle.

The final training set included 1835 data points. We computed for each data

point in the training set its formant frequencies and fifteen MFSPC regressors.

Since the MFS frame advance was 5 ms and the formant tracker's was 10 ms,

the regressors for each data point consisted of the MFSPC's averaged over the

two frames coincident with the tracker frame.

Because it would have been time consuming, we did not check the estimates

made by the formant tracker. Since only formants with relatively sharp reso-

nances were used, we believe that the formant tracker estimates were reliable.

In the following, we will refer to the formant tracker estimates as the "true"

values Fk of the formant frequencies to distinguish them from the predicted

values Pk computed from Eq. 4.1, although it should be kept in mind that

both values are really estimates.

We used two methods to compare performance among the different regres-

sion models investigated. In the preliminary stage of model building we used

the R2 value for the fit, which measures the fraction of variance in the response

variable accounted for by the model. It d.oes not measure the ability of the

model to predict the response variable on new data. This is particularly a

problem in cases where there are few training data and many regression co-

efficients to estimate. In these cases, the model might be overspecified to the

training data, yielding high values of R2 but large prediction errors on new

data. To deal with this problem, we used a test set of the five "sx" sentences

from each of six male TIMIT speakers, none of whom were used in the train-

ing set. A total of 571 data points were collected from this test set in the

same fashion as described above. From these data, the root mean squared
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Figure 4.2: Fit of MFSPC-based regression model for F2. Model determined
using fifteen mel-frequency spectral principal components (MFSPC's) as re-
gressors. Line represents F2 = F2.

error (RMSE)

1 ne- (F,, - P20,)
nt i=1

where nt is the number of points in the test set, is used as a metric for compar-

ing model performance. We also report the correlation coefficient, r, between

predicted and true values of F2 in the test set [Myers 86, p.40].

A plot of F2 predicted from the fifteen MFSPC's against the true F2 for

training set is shown in Figure 4.2. We can see from the plot that the fit

is quite linear for moderate values of F2 but not at low and high values. In

particular, F2 is overpredicted at low values and underpredicted at high values.
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Figure 4.3: Loadings of MFSC's on predicted F2. Each loading is the estimated
correlation coefficient (r) between the corresponding MFS coefficient and the
F2 predicted from the MFSPC regression model. The loadings are plotted
against the center frequency of the corresponding MFS filter. For clarity, only
the frequency range from 0 to 3000 Hz is plotted.
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To understand the behavior of the model, we computed correlations be-

tween the predicted F2 values and the MFSC's as estimated from the regres-

sion model training data. These are referred to as "loadings" in the statistical

literature, e.g., [Dillon 84, p. 31], and are useful for interpreting regression

coefficients. Note that the regression coefficients were determined for the prin-

cipal components of the MFSC's, not the MFSC's themselves. However, the

loadings for the MFSC's on F2 are meaningful in themselves and are easier to

interpret than those on the principal components. The loadings were plotted

against the center frequencies of the mel-frequency filters, as shown in Fig-

ure 4.3. We only show the range from 0-3000 Hz. Beyond this range, the

curves tend towards a zero loading.

Where there is a large difference between loadings of adjacent filters, the

predictor is most sensitive to relative values of the MFSC's in those filters.

For example, there is a large difference in loadings of the filters near 1500 and

near 1600 Hz. Thus, a data point for which the 1600 Hz MFSC is higher will

tend to be associated with a higher predicted value of F 2 than in a case where

the opposite is true. In general, at frequencies where the curve has greatest

slope, the predictor is most sensitive to differences among MFSC's. Thus, the

predictor appears to be most sensitive between 1000 and 1900 Hz. In effect,

the predictor computes a quantity related to the a spectral "center of gravity"

in the range of 1000-2000 Hz since its loading on each filter in that range is

proportional to the frequency's distance from the center of the range, 1500 Hz.

However, it is not sensitive at frequencies from 800 to 1000 Hz or from 1900

to 2500 Hz, indicating that differences in F 2 within these ranges will not be

reflected by the predictor. This is consistent with the observed behavior of the

predictor.

The range where the fit is good is probably limited due to fact that spectral

prominences below 1000 Hz are most often associated with F, and those above

1900 Hz are often associated with F3. Assume, for instance, that for a point in

the regression training set, F1 fell in the range of the predictor's sensitivity and
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had a more prominent spectral peak than F 2. The predicted F2 value would

then be the observed F, value, leading to a large prediction error for this data

point. The least-squares method acts to avoid these large errors and so the

presence of such data points would lead the method to compute the center of

gravity over a smaller range. Thus, the method sacrifices prediction accuracy

beyond the intermediate range for accuracy within that range, where most of

the data points lie.

We thus reasoned that it would be difficult to predict values of F2 beyond

the midrange without building a more complex model that took the effect of

other formants into account. Instead, we opted to concentrate on improving

the model for midrange values of F2 by removing from the regression training

set points whose F2 values fell outside the midrange. Thus, we traded off

the accuracy of the the fit outside of che midrange, which was not very good

anyway, for more accuracy within the midrange. We decided on an appropriate

midrange by iteratively reducing the range to be predicted and making plots

such as that in Fig. 4.2 until the fit looked good throughout the range. We

finally settled on a midrange of 900 to 1900 Hz. covering 1473 (80%) of the

F 2 values in the training set. The reported MMSE and r values of this and all

subsequent models on the test set pertains to F2 in the midrange.

In building a model to predict midrange F2, we found that the MSE

I •,t(F 2 - F2)2 was slightly smaller when log F 2 was used instead of F2 as

the response variable. Thus, the model is of the form
15

log"F2 = ao + aici (4.2)

where ci is the ith MFSPC. For this model, P 2 = exp(log/F2).

Fig. 4.4 illustrates a plot of the midrange F2 from the training set against

the value predicted using Eq. 4.2. While there are slight deviations from

linearity near 900 and 1900 Hz, they are not as severe as those for the model

of the full F2 range, as displayed in Figure 4.2. Also, there is less spread

around the line F2 = P2 for the midrange model. The RMSE for this model
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Figure 4.4: Fit of MFSPC-based regression model for midrange F2. Model
determined using fifteen mel-frequency spectral principal components (MF-
SPC's) as regressors and log F2 as the response variable. Line represents
F2 = F2 . Scale same as in Figure 4.2 to facilitate comparison.
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on the test set F 2 is 103 Hz. and r = .934. These values were similar to those

obtained on the training set, verifying that the model was not overspecified.

While this is a moderately high value of r, we believed that the model could

be improved by exploiting the concept of a center of gravity computation more

fully. We were inspired in this by work described in [Zue 89b] which provided

anecdotal evidence that the center of gravity computed using the hair-cell

envelope spectral representation tracked formant frequencies quite well. As

we show below, the regression model of Eq. 4.2 is incapable of computing a

true center of gravity.

To be specific, let us introduce a center of gravity computation based on

the set of MFSC's ej, 1 < j < 40. Let t and h be the index of the lowest and

highest frequency coefficients used and let fj be the center frequency of the

Jth filter used to represent the mel-frequency spectrum. Finally, let C(t, h) be

the center of gravity determined for a specific (t, h) pair. Then

C(g,Ih) = - = fej (4.3)
FhJ=t ej

The true center of gravity C(t, h) can be used directly to estimate F2 . However,

a better estimate can probably be derived by using the multiple regression

framework to solve the problem. Formally, let

ge(, h) = , fj < h. (4.4)

We will refer to the gi as center of gravity (CG) coefficients. Then the equation

h-I

log F2 = ao + E a g,(t, h) (4.5)
j=1

can be used as the estimate. As usual, the set of a3 denote the regression

coefficients. The set of g,(f, h) are the regressors. The reason that the largest

indexj is h -I and not h is that ,=t gi = 1 so that only h - I out of h - C + I

elements of the set of gj are linearly independent. Thus, one of the regressors

can be eliminated from the regression model and we arbitrarily eliminated gh.
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Ignoring the fact that log F 2 is being estimated instead of F 2, this equation

is similar to Eq. 4.3 except that the coefficients aj are determined by regression

instead of being set to the center frequencies fj. Thus, the model is capable of

computing the true center of gravity defined in Eq. 4.3 if this corresponds to

the minimum MSE estimate of log F 2. The transformation from the set of ej to

the set of g9 is non-linear. Since the principal component transformation from

the MFSC's to the MFSPC's is linear, Eq. 4.2 describes a linear combination

of the MFSC's and thus cannot be used to compute a center of gravity.

To use Eq. 4.5, t and h must be specified. Because F2 was being estimated

over the range of 900-1900 Hz., we tested models for a number of (t, h) pairs

for which ft and fk were near 900 and 1900 Hz, respectively. No model yielded

a substantial decrease in RMSE compared to the MFSPC regressor model of

Eq. 4.2.

We hypothesized that this disappointing result could have been due to the

limited dynamic range of the MFSC's. From Eq. 4.3 one can see that each

frequency fj in the center of gravity computation is weighted by e,, the cor-

responding MFSC. If there is not a great difference among the weights, no

frequency will dominate the computation and the center of gravity computa-

tion might not be sensitive to a spectral peak. This applies to Eq. 4.5 as well,

since it is based on Eq. 4.3.

To test this hypothesis, we generalized the center of gravity computation

of Eq. 4.3 to

C(t, h, d) = !2ý)f exp(de,) (4.6)1:'=t exp(dej)

where d is a parameter that controls the dynamic range of the coefficients.

Note that when d = 0, the equation is identical to Eq. 4.3. When d = oo, the

center of gravity is the center frequency corresponding to filter whose MFSC

is highest. Finally, when d = 1, the weights in the center of gravity are the

exponentials of the MFSC's. The CG coefficients g, corresponding to this
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generalization are expressed as

'(hd)- exp(de,) I < * < h. (4.7)
gj(lhd) = he= exp(dej)'

We tested models using the generalized regressors for various (1, h, d) triples.

The lowest test set RMSE of 47 Hz. was obtained for I = 13 (ft = 1000 Hz.),

h = 22 (fh = 1850 Hz.), and d = .75. Thus, the RMSE for this model was less

than 50% of that of the model based on MFSPC regressors. The correlation

coefficient for this model was .983.

Finally, we combined the two sets of regressors into the model

15 21

log F2 = ao + E a,c, + 1_ bjgj (13,22,.75) (4.8)
i=1 /j=13

where ai and bj are regressor coefficients. This yielded an RMSE of 45 Hz. and

r = .985 on the test set, a slight improvement over the previous model. Again,

the corresponding measures of performance on the training set were similar.

Thus, even though this model has a greater number of regression coefficients

to determine, it is not overspecified. Since MFS filter spacing in the range of

900 to 1900 Hz varies from about 70 to 130 Hz., it is probably difficult to do

better than this.

A plot of the predicted vs. true values of F2 on the test set for this model

is shown in Fig. 4.5. While for almost all cases the model performs well, there

are some errors of 200 Hz or more. We hypothesize that they may be due

to the presence of zeroes in the vocal tract transfer function that split the

formants into two peaks. This might lead to the frequency at one of the peaks

rather then a value between the two peaks being predicted as the formant.

The process of building a model for F1 was similar. The model was based

on values of F1 below 700 Hz., comprising 92% of the training data. We will

refer to this range as low range Fl. Again, the best regressor set consisted of

a combination of the MFSPC and CG's and log F1 was used as the response

variable. For the best model, the RMSE is 26 Hz. and r = .973.. This was
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Figure 4.5: Fit on test set of best regression model for midrange F2. Model
uses fifteen reel-frequency spectral principal components (MFSPC's) and ten
center of gravity (CG) coeffcients as regressors. The model's response variable
is log F2. Line represents P•2 = F2.
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Figure 4.6: Fit on test set of MFSPC-based regression model for low range
Fi. Model determined using MFSPC's and- CG regressors as discussed in text.Line represents F: = Fl.

obtained with I• = 1 (ft = 200 Hz.), h -- 8(fh = 6T0 Hz.) and s = .25. A plot

of the predicted vs. true F, for the test set is shown in Fig. 4.6.

The filter separation in the 200-700 Hz. range is a constant 67 Hz. Thus,

it is unlikely that any model could obtain an RMSE substantially below 26

Hz. We do not have any explanation for the different optimal values of d

obtained for predicting F2 and Fl1. In any case, !,rformances of both models

were relatively insensitive to choices of d in the range of .25-.75. Table 4.1

compares the performance of the models discussed in this section for predicting

midrange F2 and low range Fl.
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F, Model Performance F2 Model Performanc
MSE (Hz.)_ r MSE (Hz.) J r

MFSPC's 40 .931 103 .934
CG's 33 .961 47 .983

Both 26 .973 45 .985

Table 4.1: Performance comparison of regression models for predicting
midrange F1 and F2 . The regressors for the three cases are: (1) the fifteen
mel-frequency spectrum principal components (MFSPC's), (2) the center of
gravity coefficients used for each formant (CG's) and (3) both. The model's
explanatory variable in all cases was the logarithm of the formant frequency.
Both correlation (r) and mean square error (MSE) reported for test set.

We attempted to build a regression model for F3 but were unable to get

good results. Thus, we only included estimates of F' and F2 in the phonetic

recognition experiments described in Section 4.8.3. We will refer to these

estimates as predicted formants and abbreviate them as PFP and PF 2.

4.4.3 Comparison to Previous Work

Broad and Clermont [Broad 89] built multiple regression models of F1, F2 and

F3 using 14 LPC-based cepstral coefficients as regressors. Unlike our study,

formants were hand-edited, and moving averages of both the coefficients and

the formants were used.

They performed a pilot study for a single male speaker and a more com-

•prehensive study with a set of four male speakers. For the pilot study, plots

of true vs. predicted formants on the training set did not exhibit the poor fit

outside the midrange seen in Fig. 4.2. The poorer fit of our model may be due

to the fact that data were collected from several speakers and from all portions

of speech assumed to be voiced rather then from vowels alone. However, there

are at least two other plausible explanations for the difference:

1. A regression model based on the LPC cepstrum might somehow avoid

confusions among formants. The authors do report that errors with the
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LPC cepstrum are smaller than those obtained using a cepstrum directly

computed from the log spectrum. However, they do not compare LPC

and mel-frequency cepstra.

2. The model is overspecified so that a plot of the fit on new data would

exhibit the aforementioned behavior. This is likely given that in the pilot

study, the 660 points used to train the model are collected from only

180 tokens and only 60 distinct syllables. In fact, in the comprehensive

study the authors do indeed report that speaker-specific prediction errors

on new data are a factor of 1.6 greater than those on training data.

The comprehensive study collected more data per speaker than the pilot

study did. Thus, it is likely that the pilot study suffered even more from

overspecification.

The results in [Broad 89] most relevant to our study concern the model

performance for multiple speakers on a test set distinct from the training set.

For this condition, the reported RMSE for F1 and F2 are 52 Hz and 164 Hz,

respectively. These are much larger than the errors obtained by our models. A

key reason for this, of course, is that our models attempt to predict formants

over a smaller range so a comparison between the two models is not really fair.

Other reasons may include our use of more training data and the non-linear

transformation to CG coefficients that we use in our regressor set.

Other related work includes a series of studies based on the relationship

between F, and F2 in Dutch vowels and log spectral energies of a bank of 18

wideband filters. The work was reported in [Pols 69, Klein 70, Pols 73]. In

[Pols 69], high correlations were found between formants and linear combina-

tions of the first six principal components of the filter outputs for vowels from

a single speaker. In [Klein 70], formants and filter outputs for twelve vowels

were averaged data from fifty male speakers. High correlations was determined

between the first four principal components of the averaged vowel spectra and

the averaged log F1 and log F2. In [Pols 731 a similar result was obtained using
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linear combinations of filters determined by discriminatory criteria rather then

principal components. The act of averaging the data is likely responsible for

the high accuracy of linear models reported in these papers compared to ours.

4.4.4 Discussion

The major substantive result of this section is that a linear model is inadequate

for characterizing the relationship between the MFSC's and formants. By

understanding the mechanism behind the relationship we were able -o develop

a better mcn•.el, albeit over a limited range. However, we h:-ve not been alF"! to

determine whether the addition of formant estimates to ? IFSC's can improve

recognition performance. The lack of -'ibstantia' improvement when they are

added, as demonstrated in Section 4.8.3, may be due instead to Lhe limited

range of the models. This is di~cu ,ed further where we present the results.

Thus, it would be a worthwhile extension to our work to improve the models

as this might settle the question.

Another T s-", J xtensic would be to apply the process described in this

sek_,ion to model- ; other features that are known to be useful for discrim-

inatior. For instance, it might be interesting to model the voice onset time

(VOT) for P stop consonant with the recognizer's measurement set since VOT

is known to be a good cue for distinguishing voiced from unvoiced consonants

[Lisker 64]. The failure to find a strong relationship between the measurement

set and the VOT coupled with a tendency of the recognizer to make many

voiced/voiceless confusions might indicate a problem that needs addressing.

We discuss speech recognition diagnostics in depth in Chapter 6.

4.5 Out-of-Segment Measurements

We have suggested that an important property of our segmenter is that seg-

ment boundaries may be useful places about ,hich to make measurements

useful for discrimination. To take advantage of this property, we included in
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our study measurements made just outside the segments being modelled. We

refer these as out-of-segment measurements. In particular, we focused our at-

tention on measurements that would be useful for discriminating voiced stops.

The place of articulation of stop consonants can often be identified from the

direction of formant movem.rnts and values of formant frequencies in vowels

just following the stop burst and just preceding the stop closure (if one exists)

(Stevens 78, Sussman 91). Thus, formant frequencies measured just outside

those associated with stops were good candidates for the study. In particular,

we focused our attention on voiced stops. Formant movements are of particular

importance for discriminating them because they are often unaspirated. Thus,

the aspiration spectrum, which can be used to distinguish voiceless stops, is

of less use in distinguishing voiced ones.

To determine measurement locations before and after each segment, we

measured discrimination among stop closures and bursts, respectively. We

will describe the procedure used to determine measurement locations after the

burst segments. An identical procedure was used to determine the locations

before the closures.

For each segment sequence in the acoustic model training set that was as-

sociated with a stop burst, we computed PF1 and PF 2, the formants predicted

from the model of the last section, for each frame from one to ten frames (5-50

ms) beyond the right edge of the final segment in the sequence. We did not

check the identity of the following phonetic label to the right but we assume

that in most cases the stops were followed by vowels. Thus, for most segment

sequences the measurements were presumably made at the onset of voicing.

Let the value of the predicted formant PFk, k = 1 or 2, measured j frames

beyond the right edge of the segment be PFkj. For each token of the voiced

consonants /b/, /d/, and /g/, and each frame pair u and v we measured

formant movements

Ak(u, v) = PFk,, - PFk,, U < 1 _< V _< 10.
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for each formant. Finally, for each formant and each pair of voiceless con-

sonants we computed the magnitude of the difference in class means of the

formant movements AIk(u,v) normalized by an estimate of the within-class

standard deviation pooled over the two classes. This is a the one-dimensional

version of a widely used measure of class separation [Duda 73 ,p. 29 ].

We then plotted this measure of separation as a function of u and v using

perspective plots to determine the (u, v) pairs that provided the most class

separation. These plots are shown in Fig. 4.7. In the top right plot, for

example, it can be seen that when PF 2 is being used to discriminate between

/b/ and /d/, the maximum class separation occurs when the measurements are

made 5 ms and 35-50 ms into the following segment. By inspecting for each pair

of classes the perspective plot for the formant providing the best separation

(PFI for /b/-/g/ and PF 2 for the others), we concluded that measurements

made 5 and 35 ms after the segment provide close to the best separation for

all three pairs.

To check that the formant movements were in the direction we expected,

we generated for each voiced stop boxplots [Chambers 83] of the differences

between measured at 5 ms and 35 ms after the segment. They are shown in

Fig. 4.8. The horizontal line segment in the middle of each box represents the

median, the box extends from the first through third quartiles and the bars

extending out of the box are each of length 1.5 x interquartile range.

While the plots indicate large spreads in the distributions, there is a gen-

eral correspondence between the observed results and those that would be

predicted from prior acoustic-phonetic knowledge. For instance, the plots of

PF1 indicate that formants tend to rise out of all three consonants, but most

for /g/. The rise is in accord with acoustic-phonetic theory [Kewley-Port 821

although we are unaware of any theory behind the greater rise for /g/. Also,

as expected, the PF 2 difference tends to be positive for /b/, reflecting ris-

ing formant movement due to the labial place of articulation. That of /d/

tends to be near 0 or negative since /d/ often pulls F2 up towards 1800 Hz
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Figure 4.7: Voiced stop separation as a function of formant measurement
location. For each pair of classes, the standardized difference in class means
of formant change between the two locations where the formant is measured
is used as the measure of separation. The near and far frame axes indicate
the intervals between the end of the segment and the earlier and later frames
at which the formant is measured, respectively. The class pair and predicted
formant identifier appear above each plot.
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Figure 4.8: Formant movements between 5 ms and 35 ms after segment for
voiced stops. Boxplots are as described in [Chambers 83). The horizontal line
segment in the middle of each box represents the median, the box extends
from the first through third quartiles and the bars extending out of the box
are each of length 1.5 x interquartile range. Extent of notches indicates 95%
confidence interval in mean of the change in formant frequency. Left boxplot
shows change in PF, and right shows change in PF2. The identity of the voiced
stop appears under each boxplot.
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[DeLattre 551. The same is true of /g/, which tends to pull F2 up towards F3.

The correspondence of these results to their predicted behavior is evidence

that the segmenter is behaving in a reasonably consistent manner following

voiced stops. Additionally, the class separations, while not great, are large

enough to suggest that the predicted formants are useful measurements for

performing phonetic discrimination.

Results obtained by measuring before the stop closures were quite sym-

metric with these, so we retained spectral measurements made at 5 and 35 ms

before the start of each segment. The perspective plots illustrating separation

among the closures is shown in Fig. 4.9.

Thus, the results of these experiments led us to include spectral represen-

tations measured at 5 and 35 ms before and after the segment edges. Each

spectral representation includes the 15 MFSPC's, the two predicted formants

and the energy. We will abbreviate all measurements made 5 and 35 ms after

the segment using the suffixes "F" (for "following") and "FF" (for "following

following"), respectively. Similarly, measurements made before the beginning

of the segment will have prefixes "P" and "PP" for "preceding" and "preced-

ing preceding." Thus, for example, the spectral representation of the frame 35

ms after the end of the segment includes the 18 measurements FFMFSPCj,

1 < i < 15, FFPFI, FFPF 2, and the energy measurement FFENGY.

Including out-of-segment measurements may lead to a greater degree of sta-

tistical dependence among segment observation vectors since the same spectra

may be included in the observation vectors of distinct segments. However, we

chose to ignore this problem in our work.

4.6 Summary of Measurements

Figure 4.10 depicts, for a single segment, all the measurement subsets dis-

cussed in the chapter. The complete set of measurements includes eight spec-

tral representations. Their locations and the abbreviations used to refer to
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Figure 4.10: The complete measurement set. Arrows point to positions where
spectra are measured for each segment. Letters associated with arrows are
the position abbreviations. Average spectrum and duration not depicted.
(PP: preceding-preceding, P: preceding, B: beginning, M: middle, F: following,
F F:following-following)
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them are listed in Table 4.2. The measurements made at each position are

listed in Table 4.3. Note that there are eight spectral positions and 18 mea-

surements made at each position. Each of these measurements is abbreviated

by concatenating its position and measurement type abbreviations. To refer

to the beginning predicted first formant, for example, we use the abbreviation

BPFI. The complete set of segment measurements considered in the phonetic

recognition experiments also includes segmental duration (abbreviated DUR).

Thus, there a total of 8 x 18 + 1 = 145 in the complete set.

Abbreviation Measurement location
PP 35 ms before segment start
P 5 ms before segment start
B 10 ms after segment start
M segment middle frame
E 10 ms before segment end
F 5 ms after segment end

FF 35 ms after segment end
A average over segment

Table 4.2: Positions of mel-spectral-based measurements.

Abbreviation Measurement Number
MFSPC Mel-spectral coefficient principal components 15

PF Predicted formants 2
ENGY Energy estimate 1

Table 4.3: List of spectral measurements.
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4.7 Multiple and Grouped Multiple Discrim-

inant Analysis

4.7.1 Introduction

Multiple discriminant analysis (MDA) is a well-known technique for reducing

dimensionality in classification problems. Given an n x p data matrix X of

measurement vectors of length p drawn from a set of k classes, MDA computes

a set of transformation vectors r?, 1 _< j _ min(p, k - 1). The variable Xr,

has the highest ratio D of between-class to pooled within-class sample variance

attainable by any linear transformation.' Thus, this variable is likely to be

useful for discriminating among the classes. The variable Xr 2 has the highest

D among all variables uncorrelated with Xr, and so on. In general, given

some measurement vector zT, the value ZTr, is referred to as the jth linear

discriminant for that vector. The technique is described in detail in [Duda 73,

Johnson 88].

As with principal components analysis, MDA computes a set of linear

transformations of the measurement set and orders them according to some

criterion. The advantage of MDA over principal components analysis is that

it considers discrimination ability when ordering the transformed variables,

while principal components analysis does not. In particular, it is possible that

the set of q principal components with the highest variances are not the set

of q transformed variables most useful for phonetic discrimination. On the

other hand, the first q discriminants can be shown to provide the minimum

classifier error rate of any set of q transformed variables under the assumptions

that the class PDF's are Gaussian and that each has the same within-class

covariance [Johnson 88, p. 534]. Even if these conditions are not met, D is a

'!n general, if there are k classes, and each class i has n, data points associated with it
and a within-class sample covariance matrix of S, then the pooled within-class covariance

k Fk 2matrix Spooled is -.,=l n,S,/-i=l ni. The pooled within-class sample variance apooled
has a similar form but in one dimension. The pooled within-class standard deviation, which
is referred to in Section 4.7.3, is thus apooled.
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more reasonable criterion than variance for determining transformations useful

for discrimination.

Pols [Pols 73] discussed the use of MDA as a technique for determining mea-

surements useful for vowel classification and pointed out its theoretical superi-

ority over principal components analysis for classification. Brown [Brown 87]

provided a detailed description of the technique, used it in a recognition task

and showed that a recognizer using a given number of linear discriminants

could outperform one using the same number of principal components. The

technique has also been used in speech recognition by Hunt (Hunt 89] and

others.

4.7.2 Implementation

In a speech recognition system, the transformation determined by MDA is used

to transform a measurement vector to an observation vector of q discriminants.

The set of observation vectors so produced are use to train the subword models.

In the recognition process, each measurement vector in the utterance to be

recognized undergoes the same transformation into a vector of length q and

the acoustic match of this vector to each model state is used in the scoring

process.

To compute the discriminants, it is necessary to provide a set of training

measurement vectors, each of the same length and each of which is labelled

with the class to which it belongs. Thus, it is first necessary to define the set

of classes to be discriminated. One possibility would be to consider each state

in all the phone/biphone models to be a distinct class. Then all measurement

vectors used to estimate the PDF for a particular state would be labelled with

that state for the purposes of the analysis. However, the role of a recognizer

is to distinguish labels, not states, from each other. Thus, it is inappropriate

that states within a given model should be assigned different classes.

A more appropriate set of classes for phonetic recognition, at least, would

be the set of phone labels. In a system where each segment is associated with
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a single phone token, the labelling problem would be straightforward. Each

segment's measurement vector would be labelled with the associated phone.

However, we had to adapt the method to our system, for which lexical labels

include both phones and biphones and for which more than one segment can be

associated with each token. We simplified the problem by only using segment

sequences associated with single phones in the MDA training set. Thus, only

the 57 classes associated with phones were used instead of the 141 associated

with both phones and biphones. This simplification is reasonable in that it is

not necessary to discriminate an /o/ that is associated with the lexical label o

from one associated with the lexical label o-r, for example. Additionally, the

bulk of segments are associated with the 57 phone labels so it is most useful

to concentrate on discriminating them from each other.

The straightforward way of dealing with the issue of multiple-segment se-

quences being associated with some phone tokens would have been to include

all segments in the MDA training set, each labelled with its associated phone

label. However, this would have biased the training towards tokens associated

with longer segment sequences since these tokens would contribute a dispro-

portionate number of segments to the training set. Moreover, this tactic would

have provided the same label to segments associated with different portions

of a token, even though these segments might possess very different acoustic

characteristics. For example, if a token of the diphthong /aY/ is associated

with two segments, the first will be quite different spectrally from the second

and both would differ from a one-segment token of /aY/. Thus, the spectrum

measured at a particular place in a segment occupying one of these positions

characterizes a different part of the phone than the spectrum measured at the

same place in a segment occupying another position. For example, the BMF-

SPC's measured at the beginning of the first /aY/ segment would characterize

the beginning of the diphthong while that measured at the beginning of the

second segment would characterize the middle of it.

Instead, we represented each token with a single measurement vector com-
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Figure 4.11: The complete composite segment measurement set. Arrows point
to positions where spectra are measured to build a composite segment from a
three-segment token. Letters associated with arrows are the position abbrevi-
ations. Average spectrum and duration are derived from the middle segment.
They are not depicted. (PP: preceding-preceding, P: preceding, B: beginning,
M: middle, E: end, F: following, FF:following-following)

posed out of of parts of measurement vectors from each segment in the sequence

associated with the token. Figure 4.11 depicts the technique. Measurements

characterizing the beginning (the preceding-preceding, preceding and begin-

ning spectra) and end (the end, following, and FF spectra) of the token were

taken from the first and last segments in each sequence, respectively. Those

characterizing either the middle or complete segment (the middle and av-

erage spectra and the duration) were taken from the middle segment when

the number of segments in the sequence was odd and from segment 1 +
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number of segments/2 when the number was even. We will refer to the set

of measurements as a composite segment measurement set or, for short, as a

composite segment. We will refer to the within-class covariance matrices com-

puted for each phone label from these segments as within-phone covariance

matrices.

Composite segments are artifices in the sense that they do not correspond

to actual segments, except in cases where there is a one-segment token. Thus,

there is no theoretical justification for treating them as units to be discrimi-

nated. However, they can be rationalized as follows:

1. According to Table 3.5, 62% of the tokens of single phones are associated

with a single segment so that in these cases, the composite segment does

correspond to a single segment.

2. We have discussed the value of making measurements near segment

boundaries since these correspond to acoustic landmarks. However, the

segment boundaries between phonetic regions are probably more impor-

tant acoustic landmarks for phonetic discrimination than those within

the regions. For example, we justified the out-of-segment measurements

in terms of their ability to characterize spectral change near stop-vowel

boundaries. Because the measurements for characterizing the begin and

end of the segment are made on the first and last segments in the se-

quence, the discriminant analysis is based on measurements made near

these boundaries rather then on those made within the phonetic region.

For these reasons, we used composite segments in both the conventional and

grouped multiple discriminant analyses. We introduce the latter technique

next.
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4.7.3 Grouped Multiple Discriminant Analysis

Rationale

The MDA computation uses the pooled covariance matrix, computed as a

weighted average of the class-specific matrices. For this reason, MDA performs

best at finding transformations useful for discrimination when the within-class

covariances are nearly equal to each other and, as stated above, is the optimal

dimensionality reduction technique under the assumption of Gaussian class-

specific PDF's with equal covariance matrices.

Because of the widely differing speech sounds associated with the 57 phone

labels, we doubted that the equal-covariance assumption was valid for the

composite-segment within-phone covariance matrices used to perform MDA.

However, a more reasonable assumption might be that covariance matrices

within a group of related phones (e.g., the vowels) are similar. If this were

the case, applying MDA to the phones in the group alone would likely yield

more useful within-group discriminants than would be produced by applying

MDA to the complete set of phones. If each of the 57 phones were assigned

a group, within-group discriminants could be computed for each group, pre-

sumably improving overall within-group phonetic discrimination. This set

of discriminants would not directly deal with the problem of between-group

discrimination. However, if phones in different groups were very different

acoustically, it would be unlikely that they would be confused given any rea-

sonable set of transformations of the original measurement set. Thus, the set

of within-group discriminants would potentially yield better overall phonetic

discrimination than the set of discriminants determined from all the phone

labels simultaneously.

In this subsection we develop a method for clustering covariance matrices.

We used the method to cluster the composite-segment within-phone covari-

ance matrices and performed multiple discriminant analyses on the resulting

groups. We term this technique for computing discriminants grouped multiple
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discriminant analysis (GMDA). We show below that distinct clusters closely

correspond to distinct manners of articulation. For one of the groups, that in-

cluding vowels and semivowels, we show a correspondence among the first few

discriminants and distinctive features. Finally, in Section 4.8.3, we compare

phonetic recognition results obtained using GMDA and conventional MDA for

reducing dimensionality.

Measurement Set used in GMDA Experiments

For our work with grouped multiple discriminant analysis, we used the fllow-

ing measurement set:

1. the complete B, M, E, and A spectral representations (72 measurements),

2. the ENGY, PF1 , PF 2 and MFSPCI measured in the PP, P, F, and FF

positions (16 measurements),

3. differences between positions PP and P of MFSPC's 2 through 15 (14

measurements),

4. differences between positions F and FF of MFSPC's 2 through 15 (14

measurements), and

5. segment duration.

The set has a total of 117 measurements. We used the MFSPC differences in

sets (3) and (4) rather then the spectral representations at positions PP, P,

F and FF to reflect our belief that it is the spectral differences rather then

some other function of the out-of-segment spectra that are useful for phonetic

discrimination.

It turned out that we obtained better results in the phonetic recognition

experiments described below when the complete 145-measurement set was re-

tained instead. However, we did not repeat the GMDA experiments for that

set.
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Methodology

Hierarchical clustering [Johnson 88] was used to determine sets of similar

within-class covariance matrices. In this procedure, distances are first de-

termined between every pair of objects to be clustered. Initially, each cluster

consists of a single object. The first step of the algorithm merges the nearest

two clusters (objects) into a new cluster. Succeeding steps merge the two near-

est clusters according to some criterion for intercluster distance. The process

continues until only one cluster exists. Thus, at the ith step of the algorithm,

there exist k - i clusters, where k is the number of objects. We denote the

distance between the clusters joined on the ith step as Hi, the height of the

cluster formed on this step. Thus, each of the k - i clusters existing after the
ith step have heights less than or equal to Hi. We discuss the procedure for

determining distances between covariance matrices below.

We used the maximum-linkage clustering method, for which the intercluster

distance is defined to be the distance between their most distant members.

Empirically, we found that this criterion produced clusters more closely related

to manner classes than the average- and minimum-distance criteria that are

also commonly used for clustering.

To complete the description of the covariance-clustering method, we must

define a measure of distance between covariance matrices. We could have

treated the set of elements in each covariance matrix as a vector and used, say,

Euclidean distance between the vectors as a measure. However, there is no

theoretical justification for such a measure. Instead, we used a measure based

on a significance test used to test whether two sample covariance matrices are

drawn from populations with equal covariance matrices [Morrison 761. For the

p x p sample covariance matrices 51 and S 2 the distance is proportional to
S2p 2 +3p --l 1 1 1

[1 6(p + 1) (n I-+ I- + - )]((nl+n 2)detSpooled-(nfdetS 1+n 2 detS2)1

where det() is the determinant operator, n, and n2 are the number of data

points used to estimate S and S2, and Spooled is the pooled covariance matrix
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(n1 S1 +n 2S2 )/(n, +n 2). The higher the value of this quantity, the less likely it

is that the population covariance matrices are equal. Thus, this is a reasonable

distance measure. The measure can be extended to test the population equality

of more than two covariance matrices.

We used the method just described to cluster the composite segment within-

ph4 covariance matrices for several different measurement sets. The results

of the clustering for the 117-measurement set are displayed as a dendrogram

in Figure 4.12. Phone labels appear at the left of the dendrogram. Each solid

horizontal line in the dendrogram represents a distinct cluster. In particu-

lar, the horizontal line extending from each phone label represents the cluster

associated with that label's covariance matrix alone. Each solid vertical line

represents the merging of two clusters and the position on the vertical axis of

the line is the height of the formed cluster. It can be seen that phones with

similar properties tend to have similar covariance matrices, according to the

distance measure used. For instance, the pair of phones whose matrices are

most similar are ch and jh.

The five clusters with the greatest heights below that denoted by the ver-

tical dotted line were used as groups for the grouped multiple discriminant

analysis.. The clusters are demarcated by horizontal dotted lines in the figure.

These five groups correspond closely to the vowels, nasals, stops, closures, and

fricatives and we will refer to these groups by these names. Note that the vowel

group also includes all the semivowels. Phonetic recognition results using the

baseline measurement set described in Section 4.2 indicated that the majority

of confusions were within these groups rather then across them. Thus, this se-

lection of groups meets the criteria specified above for the potential superiority

of GMDA to MDA as a dimensionality reduction method. Consequently, we

used these groups in the experiments with GMDA described below. Another

good selection would be the two groups formed by cutting the dendrogram

at a height between roughly 80000 and 160000. The groups correspond to

sonorants and non-sonorants, between which there were very few confusions
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Figure 4.12: Results of composite segment within-phone covariance matrix
clustering displayed • dendrogram. Phone labels appear at the left of the
dendrogram. Each solid horizontal line in the dendrogram represents a distinct
cluster. Each solid vertical line represents the merging of two clusters and
the position on the horizontal axis of the line is the height of the formed
cluster, in arbitrary units. The five clusters with the largest heights below
that represented by the vertical dotted line form the groups used for GMDA,
and are demarcated by the horizontal dotted lines.
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in the baseline measurement set. However, we did not repeat the experiments

for this choice of groups.

One detail: the phone labels zh and em do not appear in the dendrogram.

This is because there were not enough composite segments in the training

set associated with any of these phones to obtain a non-singular within-class

sample covariance matrix.' Thus, a determinant could not be computed for

any of these phones' within-class covariance matrices and the phones could

not be used in the covariance clustering algorithm. For the purposes of the

discriminant analysis, where the small sample size was not a limitation, we

arbitrarily assigned these phones to groups that seemed appropriate: zh to

the fricatives and em to the nasals.

Because some confusions in the baseline experiment did occur across groups,

we added to the within-group discriminants a set of special-purpose discrim-

inants designed to distinguish phones in particular groups from each other.

These were computed by treating groups as classes the purposes of discrim-

inant analysis. Thus, for example, we computed a nasal/vowel discriminant

by lumping all the nasals into a class and all the vowels into another class

and performing MDA. Note that this generated only a single discriminant be-

cause there were only two classes used in the analysis. Likewise, we computed

two stop/closure/fricative discriminants and a nasal/closure discriminant. We

evaluate the effect of these discriminants on our results in Section 4.8.3.

The total number of discriminants computed by GMDA included fifty

within-group- and four between-group discriminants. To form an observation

vector of length q from these 54, the set must be ordered by some criterion re-

lated to their discrimination power and the first q of these should be included.

For MDA, where all discriminants come from the complete set of classes to

be discriminated, the best ordering is by the between-class/within-class vari-

ance ratios D, as discussed above. However, it is not clear that this criterion

2To determine a non-singular sample covariance matrix with a measurement set size of
p requires p + I samples
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is appropriate for ordering GMDA discriminants from different groups. For

example, assume that the phones in group 1 are less separated in the measure-

ment space than those in group 2. Then a given discriminant yi from group 1

might have a lower value of D than a discriminant Y2 from group 2 even though

Yl might be more useful than Y2 for overall phonetic discrimination. Even if

each individual discriminant was correctly ordered -by its overall discrimina-

tion power, it does not follow that the first q discriminants are the best q to

use jointly. For example, assume that q = 2 and the two discriminants with

the highest D values are from different groups. It is possible that the two are

highly correlated with each other since they are determined from independent

multiple discriminant analyses. Then, once the first of these diocrininants

is included in the observation vector, the second discriminant might not be

the best one to add to the vector. This is not the case in MDA, where all

discriminants are determined in a single analysis.

These issues notwithstanding, we used the D values to order GMDA dis-

criminants, subject to the constraint that the number of discriminants se-

lected from each group be roughly proportional to the number computed for

that group. In practice, it turned out that we did not have to employ the

constraint since the ordering turned out to satisfy it for most values of q.

We used a particular set of these discriminants in the experiments described

in Chapters 5 and 6. There were a total of 39 in the set, including the four

between-group- and 35 within-group discriminants listed in Table 4.4.

Between-

Vowel Nasal Stop Closure Fricative group Total
11 3 9 7 5 4 39

Table 4.4: Distribution of GMDA discriminants for 39-discriminant set.
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Interpretation of Vowel Discriminants

To gain some insight into the roles played by the discriminants, we examined

the class means of the first few discriminants determined for each group by

GMDA. The most interesting results occurred in the vowel group. We present

the results in this section.

Figure 4.13 illustrates the class centers plotted on the plane defined by

the first two vowel discriminants. The values have been scaled so that the

pooled within-class covariance matrix of the discriminants is the identity ma-

trix. Thus, a distance of 1.0 in any direction on the plot corresponds to the

pooled within-class standard deviation. The negative of the second discrimi-

nant is plotted on the vertical axis so that high vowels (those with typically

low values of F1) appear towards the top and low vowels appear towards the

bottom. This suggests that the second discriminant is closely related to Fl.

Similarly, the centers are arranged on the first discriminant axis according

to their frontness. Front vowels, those with high values of F 2, appear to the

left. We have reinforced the impression of the correspondence between the

features and discriminants by superimposing a quadrilateral similar to the

canonical vowel quadrilateral often used to describe the vowel feature space

[Ladefoged 82, p. 75]. We should point out that Pols [Pols 731 obtained a simi-

lar result using a slightly different method of discriminant analysis to transform

a series of wideband filter energies.

Figure 4.14 illustrates the class centers of the third through the sixth vowel

discriminants. The third discriminant apparently corresponds to the feature

[+retroflexed] since the /r/-like phones appear by themselves at the right edge

of the plot. Also, /1/ appears at the left edge, presumably because it tends to

have a high value of F 3. The fourth discriminant class center tends to increase

with the amount of spectral movement in the phone so that /2/ appears at

the left edge and diphthongs and /y/ appear at the right edge. It is tempting

to associate this discriminant with the feature [+tensej since for the three
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Figure 4.13: Class means of first two vowel discriminants. Classes plotted in
iPA. Values scaled so that pooled within-class covariance matrix is the identity
matrix. Thus, a distance of 1.0 in any direction on the plot corresponds to
the pooled within-class standard deviation. The negative of the second dis-
criminant is plotted on the vertical axis so that the vowels are arranged as in
[Ladefoged 82, p. 75). The quadrilateral is plotted to reinforce the correspon-
dence between the discriminants and feature values.
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Figure 4.14: Class means of higher-index vowel discriminants. For clarity,
labels are placed randomly on vertical axis. Values scaled so that pooled
within-class standard deviations are 1.0. (a) Means of the third discriminant.
(b) Means of the fourth discriminant. (c) Means of the fifth discriminant. (d)
Means of the sixth discriminant.
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pairs /i/-/i/, /I/-/e/ and /u/-/u/ that are distinguished only by the value of

this feature, the [+tense] vowel center is higher. However, the correspondence

does not hold for the /o/-/oD/ pair. Higher-index discriminants are harder to

interpret. Also, note that class separation decreases with increasing index.

Discussion

Two additional points are worth mentioning about covariance clustering. First

of all, the utility of the method for speech recognition is not limited to the

application described here. In an HMM-based recognition system that models

each state PDF with a multivariate Gaussian, it is expensive to devote specific

full covariance matrices for each state in the recognition network. Specifically,

if there are N states in the network and the observation vector is of length

p, N matrix-vector multiplications, requiring on the order of Np2 operations,

are necessary for each observation vector to compute the observation proba-

bility for each state in the network. Additionally, making good estimates of

covariance matrices for each state requires lots of training data.

One method for dealing with the estimation problem is to linearly trans-

form the training observation vectors so that their pooled within-state covari-

ance matrix is diagonal [Bocchieri 861. The same diagonalizing transformation

is performed on the observation vectors during recognition. Diagonal covari-

ance matrices can then be used to model each state PDF, reducing the number

of operations required per observation vector to the order Np. However, if the

within-state covariance matrices differ greatly, even though the pooled within-

state covariance matrix is diagonal, this might be a poor assumption for the

individual within-state covariance matrices.

An alternative approach would be to cluster the within-state covariance

matrices into g groups and to use the pooled within-state covariance matrix

for each group to represent the within-state covariance matrices for all states

assigned to the group. Each state PDF would be represented by a diagonal

covariance matrix. To compute the observation probabilities, the observation
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vector would undergo g diagonalizi'- g transformations, one for each distinct co-

variance matrix. Thus, the total number of operations would be of the order

9p2 + Np. The system parameter g could be determined based on considera-

tions of training data availability and available computation. Note that g = N

corresponds to the state-specific full covariance case and g = 1 corresponds to

the pooled covariance case described above.

Such a method might also be used in a tied-mixture recognizer [Paul 91,

Huang 89, Bellegarda 89] to determine full covariance matrices for some of

the mixture components instead of the diagonal covariance matrices typically

used. However, details about the specifics of the implementation remain to be

worked out.

Another point to raise about covariance clustering is that a technique other

than hierarchical clustering could be used and might perform better. The dis-

advantage of hierarchical clustering using the maximum linkage method is that

the within-cluster distance is defined to be the maximum distance between any

two of its members. A more useful distance measure would involve all cluster

members. In particular, as we stated when we introduced the measure used

to define distance between covariance matrices, the measure can be extended

to test the equality of any number of sample covariance matrices. Thus, an

alternative clustering method would be to predetermine the number of groups

g and form clusters so as to minimize the sum of the within-group distances

defined by the extension of the significance test. Because of the complicated

form of the distance, we do not know if there exists an efficient algorithm for

finding a good solution. Developing and testing such an algorithm is beyond

the scope of our work and is a subject for further research.

4.8 Phonetic Recognition

We tested the effect of the choice of measurement set on a phonetic recognition

task, in which the system attempts to determine the utterance's phone string.
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While the usual goal of a speech recognizer is to recognize words rather then

phones, phonetic recognition experiments are simpler to run and the results

should reflect the relative efficacy of the measurement sets we use. Also,

given that in many recognizers, word models are built out of subword models,

phonetic recognition performance should be correlated with word recognition

performance. We provide evidence for this correlation in Chapter 5, where we

compare two of the measurement sets in a word spotting task.

The phonetic recognition task has been used by several researchers, includ-

ing [Lee 89b, Robinson 91b, Leung 90, Digilakis 921, to test various approaches

to speech recognition. While we use a different corpus and slightly different

experimental conditions from these researchers, their results are useful bench-

marks against which to compare ours.

4.8.1 System Description

To run the phonetic recognizer, the phone and biphone models built as de-

scribed in Chapter 3 were used to build a network for recognizing phone se-

quences. The resulting network is illustrated in Figure 4.15. The network can

be thought of as a large HMM in which the initial state is connected to the

initial state of each phone/biphone model with a null transition, and the final

state of each model is connected to both the final state of the network HMM

and the initial state of each phone/biphone model. This allows all possible

phone sequences. The approach is the same as that used in [Lee 89b].

The Viterbi algorithm [Viterbi 67] was used to determine the highest-

scoring state sequence through the network. The hypothesized phone sequence

is the sequence of phone/biphone labels of the models associated with the de-

termined state sequence.

As we mentioned in Chapter 3, the training set included 2150 TIMIT ut-

terances from 430 speakers and 473 VOYAGER utterances from 10 speakers.

These were used to train the phone/biphone models whose topologies were

defined in Chapter 3. The parameters that needed to be trained included the
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Figure 4.15: Phonetic recognition network. Each circle represents a model
such as that described in Chapter 3. Final model states are connected to
initial model states. The connection is represented in the figure with common
initial and final states. However, since a bigram model is used, the arc between
the final and initial common states actually represents distinct arcs between
every pair of models, each with a distinct transition probability.
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within-model transition probabilities, whose training was discussed in Chap-

ter 3, between-model transition probabilities, and state PDF parameters.

As in [Lee 89W, we chose to use a bigram estimate of the between-model

probabilities. However. because of the presence of biphone models, a more

complex method for estimating the transition probabilities is required. Since

the description of our estimation method is fairly detailed and not germane to

the main focus of this chapter, it appears in Appendix B.

Each state PDF was modelled as a multivariate Gaussian with a diagonal

covariance matrix for the experiments reported this chapter and in Chapter 5.

We chose this model because it requires relatively few parameters to estimate

compared to mixture or full covariance Gaussian models. This is a particularly

important consideration for training biphone models which have few training

tokens, and models trained from specific words, which we use in the word

spotting experiments of Chapter 5. Also, it requires less computation for

training and recognition than either of the other two. On the other hand, it has

been shown that increasing the number of mixtures per model in a recognizer

can improve performance [Ney 901 so we might have sacrificed performance

with this choice.

The state PDF for any state in such a model is represented by an estimated

mean vector m and a vector v of weights that are reciprocal of the estimated

measurement standard deviations. Thus, each element mj in m is computed

as
1 N

m= yij, 1 5 j < q (4.9)

where N is the number of segments associated with the state and y,, is the

Jth component of the ith training vector and q is the length of the observation

vector. Each weight vj is given by

vi = (4.10)
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where
-2 V1 (4.11)N .=

the sample variance of the 1 th measurement.

For purposes of both discussion and computation it is convenient to define

the score A that an observation vector is assigned on a state as the log of

the state's PDF at the vector. With this definition, the score assigned an

observation vector v on a state whose mean and weight vectors are m and v

respectively is given by

1 q

A- -- log2r - -, _y - mA)v 2 - logv,} (4.12)
2 2 j=1

which is a special case of the general multivariate Gaussian log PDF

[Johnson 88, p. 122] appropriate for the diagonal covariance assumption.

For all measurement sets except the baseline set we applied a linear trans-

formation to the measurements so that the diagonal covariance representation

would be more appropriate. We did not do this with the baseline set since we

were not particularly concerned with comparing it to the other measurement

sets. The transformation diagonalized the pooled within-phone composite seg-

ment covariance matrix. We alluded to such a transformation above. Specifi-

cally, given the pooled within-phone composite segment covariance matrix Scs

of the measurement set in question, a matrix Ecs whose columns are eigen-

vectors of Scs is computed. It can be shown that if each composite segment

measurement vector is transformed by multiplying it on the right by Ecs the

pooled covariance matrix of the transformed vectors is diagonal. Thus, in the

training process, each training segment measurement vector zT undergoes the

transformation

YTS zTEcs

and the statistics of the transformed vectors y are used in training the models.

We did not have to transform observation vectors determined using con-

ventional MDA because any transformation so determined can be shown to
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diagonalize the pooled within-class covariance matrix used in the transforma-

tion [Johnson 88]. In particular, it can be shown that Scs is diagonal for any

set of discriminants determined using MDA. GMDA does not have the same

property so we applied the above transformation to the GMDA discriminants.

4.8.2 Evaluation Method

We used a program provided by the National Institute of Standards and

Technology (NIST) to evaluate phonetic recognition performance. The same

method was used in (Lee 89b] and [Digilakis 92). Given the utterance's pho-

netic transcription and the recognizer's hypothesized transcription, the algo-

rithm finds an alignment between them that minimizes the sum of substitu-

tions, deletions and insertions. For example if the actual transcription string

is abce and the hypothesized one is bdef the algorithm finds the following align-

ment:

a b c e x
x b d e f

where x denotes an insertion or deletion. Thus, in this case, there would be

one deletion, one insertion and one substitution for a total of three errors.

Note that the match is based completely on the transcription label strings.

Label endpoints are not taken into account.

So as to be consistent with (Lee 89b] and [Digilakis 92], we collapsed the

complete set of 57 transcription labels into 39 equivalence classes which are

shown in Table 4.5. Note that some classes include phonemically distinctive

labels so that this scheme will consider confusions between any pair of labels

in these classes as being correct. For example, any confusion between a pair

of closures will be considered correct rather then a substitution. While we

feel this to be a shortcoming of the scheme, it turned out in the few cases we

looked at that relative performance among the measurement sets was similar

whether the equivalence classes corresponded to the original 57 labels or to

the 39 collapsed label sets. Thus, to avoid reporting two sets of results and to
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ao aa m em s
ow n en nx z
aw ng sh zh
aa b f
ay d v

ax ah g th
eh p dh
uh t hh

uw ux k ch
ix ih pci tcl kcl dx

ey bcl dcl gcl
ae q epi pau
iy I el

axr er r
oy w

y

Table 4.5: Confusion classes for phonetic recognition.

be consistent with past work, we will only report results using the collapsed

label sets. In general, the difference between the two results is about 10%,

(i.e., if 50% of the tokens are correctly recognized in the 39-class scheme, 40%

are in the 57-class scheme.)

The test set used for most experiments included 232 VOYAGER utterances

from five male speakers. There were 6363 phone tokens. The speaker identifiers

are listed in Table 4.6.

1ad jwfm lmb reg sh

Table 4.6: VOYAGER test speakers - Set I.

We used a second test set consisting of four speakers in one experiment

where we could not attain a statistically significant result with the five speak-

ers alone, and also for evaluating performance for the best configuration. Ex-

periments involving this set were only run after all measurement sets had been
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compared for the original five speakers. In particular, the best configuration

was determined with the five speakers alone. Thus, the five speakers might be

considered a development set and the four a true test set. The four speakers

uttered a total of 7224 tokens. Their identities are listed in Table 4.7.

[ajd cph cth wch I

Table 4.7: VOYAGER test speakers - Set II.

Significance levels and confidence intervals are based on statistics collected

on a speaker-by-speaker basis. As pointed out in [Gillick 89], the sample statis-

tics used to test significance or to compute confidence intervals are assumed

to be independent evaluations of recognizer performance. However, any two

samples drawn from the same speaker are dependent because performance is

highly dependent on speaker identity. Thus, we feel it is unjustified to use

finer-grain samples, such as the number of errors in each utterance, in the

procedures.

4.8.3 Results

Following [Digilakis 921 we will use a figure of merit termed accuracy for com-

paring performance. It is defined as
Accuracy = 100 x (1.0 - # substitutions + # insertions + # deletions

# of actual phone tokens

This is equivalent to

Accuracy = % Correct responses - % Insertions

Middle Frame Measurements

In the first set of experiments, we looked at measurement sets based on

the middle frame's spectrum alone to judge the effect of adding the predicted
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Measurements Acc. (%) Cor. (%) Ins. (%) Del. (%) q
Baseline 44.2 54.2 10.0 12.5 15
MMFSPC 50.0 54.2 4.2 18.8 16
+ MPF1  49.7 54.6 4.9 17.9 17
MMFSPC + MPF 2  50.4 55.2 4.8 17.9 17
+ MPF1  50.4 55.5 5.1 16.9 18
+ ENGY 49.2 55.2 6.0 17.2 19

Table 4.8: Phonetic recognition results for middle frame measurements. A
measurement set beginning with plus sign (+) includes all measurements of
line above as well as measurements after plus sign. Abbreviated columns are,
from left to right: (a) Accuracy, (b) Correct, (c) Insertions, (d) Deletions, and
(e) Measurement set dimensionality. All measurement sets include duration.

formants and energy measurements. We also compared the MFSC represen-

tations to the baseline.

Table 4.8 summarizes the results. While not included in the table, all

measurement sets include duration. All results are expressed as a percentage

of the number of tokens in the actual transcriptions. The table also includes

the number of measurements in each measurement set used. A measurement

set beginning with a plus sign (+) includes all measurements of the line above

as well as the measurements after the plus sign.

Note that the baseline set performs worse than the others. There are sev-

eral likely explanations for this. First of all, the state PDF's of the HCEPC's

may not be modelled well as Gaussians. This is because the range of hair-cell

envelope coefficients is limited to to model auditory threshold and saturation

effects [Seneff 88). Thus, the tails of the state HCE distributions are of finite

length, unlike those of Gaussian distributions, which are infinitely long. Since

the HCEPC's are linear combinations of HCE's, they are unlikely to be Gaus-

sian. We have informally inspected the state PDF's of several HCEPC's and

have found that they indeed deviate substantially from a Gaussian distribu-

tion. Also, Glass (Glass 911 has conducted phoneme recognition experiments

using Gaussian PDF models and has found that use of mel-based spectral co-
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efficients (MFSC's) yields higher performance than use of HCEPC's. 'I is

the prime motivation behind our use of MFSC's in the other measurement st -s

investigated. Another reason the baseline performance might be low is that

we failed to diagonalize the baseline measurement set as we did for the other

sets.

Apparently, adding MPF1 decreases accura•cy while adding MPF 2 increases

it a small amount whether or not MPF 1 has been added. We tested the statis-

tical significance of the increase when MPF 2 was added by applying a paired

one-sided t-test [Lindgren 76, p. 353] to the individual speaker accuracies to

test the hypothesis that the mean accuracy was greater when MPF 2 was added

to the set. When MPF 2 was added to the MMFSPC's alone, the significance

level was .17 and when it was added to the MMFSPC's and MPF 1 , the level

was .09. Thus, the increase is marginally significant. Finally the addition

of energy (ENGY) hurts. There also seems to be a trend towards a higher

insertion and lower deletion rate as the number of measurements is increased.

From these results, it appears that the predicted F, and energy are not

particularly useful measurements for phonetic recognition. Inclusion of the

predicted F2 seems to have a slight positive effect.

As discussed in Section 4.4, it is unclear whether the predicted formants

would be more effective if the range over which the models are valid was

increased. The resemblance of each formant predictor to a center of gravity

computation causes almost all predicted values to lie within the limits of the

center of gravity's range. We confirmed this informally by plotting histograms

of predicted formants corresponding to true formants of all frequencies. The

limited range of the predictor has two ramifications. First of all, the model

likely performs poorly in predicting formants outside the ranges, comprising

about 8% of F, values and 20% of F 2 values. Secondly, because the values fall

over a limited range, they may be poorly modelled as Gaussians, just as the

HCE's are.
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_ _ Acc. (%) Cor. (%) Ins. (%) Del. (%) q

MMFSPC 50.0 54.2 4.2 18.8 16
AMFSPC 50.1 54.4 4.3 18.2 16
MMFSPC+
MPFI + MPF 2  50.4 55.5 5.1 16.9 18
AMFSPC+
APF1 + APF 2  49.6 55.2 5.6 16.9 18

Table 4.9: Average vs. middle frame measurements. Abbreviated columns,
from left to right: (a) Accuracy. (b) Correct. (c) Insertions. (d) Deletions.
(e) Number of measurements in set. All measurement sets include duration.

Middle-Frame vs. Average Spectral Measurements

We next compared the middle frame measurements with those averaged

over the segment. As shown in Table 4.9, there was little difference in perfor-

mance between the two when the two formants were not used but the middle

frame measurements did better when the formant measurements were incor-

porated. This may indicate that the formant measurements are more useful

when they pertain to a specific point in time than when they are averaged

over the whole segment. However, it is unclear why the same should not be

true of the MFSPC's.

Beginning and End Frame Measurements

The next measurement sets tested included beginning and ending frame

measurements. As discussed in Section 4.3, these were included to character-

ize within-segment spectral change. Table 4.10 tabulates results obtained for

these sets. Parenthesized expressions obey a "distributive" property so that,

for example, the expression (B + E)(PF1 + PF 2) "expands" into the four mea-

surements BPF1 , BPF 2 , EPF1 and EPF 2 and thus refers to the two predicted

formants measured at both the beginning and end frames of the segment.

The results indicate that the addition of the beginning and end frame mea-

surements actually reduces recognition accuracy. The measurement set includ-
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Measurements Acc. (%) Cor. (%) Ins. (%) Del. (%) [7]
MMFSPC 50.0 54.2 4.2 18.8 16
+ (B + E)MFSPC 48.9 54.9 6.0 15.6 46
M(MFSPC +

PFi + PF 2 ) 50.4 55.5 5.1 16.9 18
+ (B + E)MFSPC 49.0 55.7 6.7 14.9 48
+ (B + E)(PFI + PF 2 ) 47.9 55.2 7.3 14.6 52
+ (B + M + E)ENGY 48.2 55.4 7.3 14.5 55
+ A(MFSPC + ENGY +

PFM + PF 2) 46.7 55.0 8.3 14.6 73

Table 4.10: Effect of begin and end frame measurements. Abbreviated columns
from left to right: (a) Accuracy. (b) Correct. (c) Insertions. (d) Deletions.
The column labelled q lists the number of measurements in each set. A mea-
surement set beginning with plus sign (+) includes all measurements of row
above as well as measurements to right of plus sign. Parenthesized expressions
explained in text. All measurement sets include duration.

ing the middle frame MFSPC's and predicted formants exhibits the highest

accuracy. In three of the four additions of other measurements to this set,

accuracy decreased. The largest set, including all eighteen spectral measure-

ments made at all four within-segment locations (beginning, middle, end and

average), performed worst. Once again, the insertion and deletion rates seem

to be closely related to the number of measurements.

Dimensionality Reduction

There are two possible explanations for the results tabulated in Table 4.10:

1. The beginning frame, ending frame and average measurements are not

useful for phonetic recognition.

2. The measurements are useful but the high dimensionality of the conse-

quent measurement spaces led to poor estimates of model parameters.

To determine whether the high dimensionality was responsible for the poor

performance of the larger measurement sets, we applied conventional (not
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grouped) multiple discriminant analysis to reduce the size of two of the sets

in Table 4.10: (a) the 52-measurement set including the MFSPC's measured

at beginning, middle and end frames as well as the middle frame predicted

formants (described in the fifth row of the table), and (b) the 73-measurement

set including all the spectral measurements at all four locations (described in

the table's final row). The experiments had two aims: to evaluate the effect of

dimensionality reduction on the results and to evaluate the effect of adding the

average segment measurements to those of the other three spectra.3 We used

the procedure described in Section 4.7 to perform the discriminant analysis

using composite segments.

Figure 4.16 displays the results of these experiments. In the figure, ac-

curacy is plotted against the observation space dimensionality for the two

measurement sets as well as for the middle frame measurement set consisting

of the MFSPC's and the two predicted formants (the third row of Table 4.10).

The latter set was included because it achieved the highest accuracy over

all middle-frame measurements. The rightmost points for each of the mea-

surement sets represent the results obtained when there was no reduction of

dimensionality. These are the same results as reported in Table 4.10. All other

points represent cases in which MDA was used to reduce dimensionality.

The results indicate that reduction of the size of the larger measurement

sets leads to a substantial increase in recognition accuracy. However, the 73-

measurement set still underperforms the other two by a wide margin regardless

of the number of discriminants retained. Thus, adding t 7 average spectral

measurements and the energies reduces accuracy. The peak performance of

the 52-measurement set (when 18 discriminants are retained) is just slightly

3 We inadvertently used the 52-measurement set in these experiments rather then the
55-measurement set described on the sixth row of the table. Thus, the larger measure-
ment set differs from the smaller one in that it includes the energy measurements made
at the beginning, middle and end segment positions as well as the average measurements.
However, the small difference in performance observed between the 52-measurement and 55-
measurement sets suggest that the results reported here would not be substantially different
if the 55-measurement set were used.
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Figure 4.16: Phonetic recognition as a function of dimensionality of observa-
tion space. Accuracy is plotted as a function of the observation space dimen-
sionality for the measurement set including the middle frame MFSPC's and
predicted formants, and the 52- and 73-measurement sets described in text.
The rightmost point for each measurement set represents the results for the
unreduced set. All other points represent results obtained through dimension-
ality reduction through conventional multiple discriminant analysis.
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better than that of the middle-frame measurement set, suggesting that there

is not much gain from adding the begin and end frame measurements.

In light of the fact that the inclusion of measurements of spectral change in

frame-based systems is known to improve performance, e.g., [Furui 86, Lee 88],

this result might be surprising. However, there is a plausible explanation.

Within-region measurements of spectral change are probably most important

for characterizing phones whose regions tend to exhibit the most change (e.g.,

diphthongs). If each token of such a phone had only one segment associated

with it, within-segment measurements of spectral change would thus be im-

portant. However, in our system, tokens of such phones tend to have several

segments associated with them, since, as shown in Chapter 3, the number

of segments associated with each phone increases with the magnitude of the

phone's within-region spectral change. Furthermore, the HMM topology we

employ usually forces each segment associated with a given token to match a

distinct state of the HMM. Thus, for any such phone, within-region spectral

change is likely characterized by differences in parameters among states in the

phone's model. Thus, for phones associated with large spectral change, adding

measurements at several locations within the segment may be redundant. For

other phones, there is likely little benefit from these measurements either.

If this hypothesis is correct, then there is an interaction between the seg-

menter and the measurement set. For instance, the ideal segmenter described

in Chapter 3, that produces one segment per phone regardless of phone type,

might benefit to a greater degree than ours from measurements that cap-

ture within-segment spectral dynamics. This would hold true as well for the

stochastic segment model [Ostendorf 89, Zue 89a, Digilakis 92]. Thus, further

experiments to test this hypothesis would likely be worthwhile.

Out-of-Segment Measurements

The final set of measurements considered in the phonetic recognition exper-

iments consisted of the out-of-segment measurements made at 5 and 35 ms
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beyond the segment edges. For this set of experiments, all 145 measurements

made at all positions summarized in Section 4.6 were included. Thus, the set

included the MFSPC's, energies and predicted formants made at begin, middle

and end frame positions, the within-segment averages of these measurements,

and the out-of-segment measurements. We term this the complete measure-

ment set. Multiple discriminant analysis was used to reduce dimensionality.

A plot of accuracy as a function of the number of discriminants retained in

the complete measurement set appears in Figure 4.17. For purposes of com-

parison, the figure includes a similar plot for the 73-measurement set described

above as well since the only difference between the two sets is the inclusion of

the out-of-segment measurements. Because there were 55 classes included in

the discriminant analysis, the maximum number of available discriminants was

54. It is clear from the plot that the inclusion of out-of-segment measurements

provides a substantial improvement in performance regardless of the number

of discriminants used.

We tested the statistical significance of this result by applying the paired

one-sided t-test to the individual speaker accuracies to test the hypothesis

that the mean accuracy was greater for the complete set than for the 73-

measurement set. We compared the results for the 30-discriminant case for

both measurement sets. This case was chosen because it led to the best perfor-

mance on the 73-measurement set and we wanted to be conservative in testing

the hypothesis that the out-of-segment measurements improved performance.

The difference in means was significant with p = .014. Thus, including the

out-of-segment appears to be advantageous. The results by speaker are listed

in Table 4.11.

Because the positions of the out-of-segment spectra were selected so as to

maximize stop discrimination, we expected that the reduction in confusions

among stops would be mainly responsible for the improved results. To check

this, we constructed confusion matrices for the 73-measurement and complete

measurement sets (both reduced to 30 discriminants), for which the confusion
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Figure 4.17: Effect of out-of-segment measurements on phonetic recognition.
Accuracy is plotted as a function of the number of discriminants retained in
the discriminant analysis for the two measurement sets, which are described in
the text. The result obtained for the 73-measurement set when there was no
dimensionality reduction is plotted as well for consistency with Figure 4.16.
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ad jwim lmb reg sh
73-meas 47 41 53 55 53
Complete 54 40 63 60 58

Table 4.11: Measurement set comparison by speaker. The compared sets
are the 73-measurement and complete measurement sets, each reduced to 30
discriminants. Numbers are recognition accuracies.

classes were vowels, semivowels, fricatives, nasals, stops and closures. We then

computed the differences in numbers of errors between the two cases. The

results are tabulated Table 4.12.

The tables express the differences in numbers of errors in two ways. Each

cell in the top table displays the percentage of the total reduction in errors

accounted for by the confusion type associated with that cell. Thus, a large

value indicates that the reduction in that type of error played a big role in

improving overall performance. For example, the largest error reduction was in

the number of times that a vowel was incorrectly inserted in the hypothesized

transcription since the reduction in this type of error accounted for 14% of all

the improvement in performance, more than for any other reduction. Each cell

in the bottom table expresses the percentage reduction in the type of error. For

example, the number of confusions for which the input class was a stop and

the output class was a nasal was reduced by 76% through the introduction

of the out-of-segment measurements. Because there were far fewer of these

confusions than there were vowel insertions, this only accounted for 6% of the

total error reduction.

The reduction in errors is widely distributed among most types of confu-

sions. However, the number of stop-stop confusions hardly dropped at all even

though the positions for making the out-of-segment measurements were chosen

to maximize the separation in the measurement space among stops. In fact,

this type of error is one of the most common regardless of the measurement

set used (see Table 4.15). Thus, phonetic recognition would benefit from more
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Proportion of total error reduction(%)

Output class
Vow Semi Fric Nas Stop Clos Del Total

Vow 8 3 4 -1 -1 3 -9 6
Semi 1 -1 1 2 0 0 2 6

Input Fric 1 3 5 3 3 1 -4 10
class Nas 5 0 0 4 1 0 0 11

Stop 2 1 4 6 1 -2 7 19
Clos 4 2 9 3 2 NA 2 23
Ins 14 0 7 2 4 -1 NA 25
Total 35 8 30 18 9 0 -2 100

Reduction in number of errors by type(%)

Output class
Vow Semi Fric Nas Stop Clos Del Total

Vow 5 17 18 -4 -18 38 -9 2
Semi 5 -20 13 26 17 0 6 7

Input Fric 7 62 14 33 20 10 -9 9
class Nas 37 13 11 22 18 0 1 14

Stop 9 19 23 76 3 -30 13 13
Clos 19 50 31 30 21 NA 7 21
Ins 28 0 28 10 17 -10 NA 18
Total 12 18 21 22 10 1 -1 10

Table 4.12: Phonetic recognition error reduction due to inclusion of out-of-
segment measurements, by confusion type. The two cases compared are the
73-measurement and complete measurement sets, each reduced to 30 discrim-
inants. The top part displays the proportion of the total error reduction for
each confusion type, expressed as a percentage. There were 318 fewer errors
for the comp!ete set. Thus, for example, since there were 25 fewer vowel-vowel
confusions for the complete measurement set, the proportion was 25/318 = 8%
of the total error reduction. The bottom part displays the percentage reduc-
tion in number of errors for that type of confusion. For example, there were 495
vowel-vowel errors when the 73-measurement set was used and 470 when the
complete set was used, corresponding to a reduction of 5%. Negative numbers
indicate an increase in number of errors. Classes in order are vowel, semivowel,
fricative, nasal, stop, and closure. Deletions and insertions tabulated as well.
The "insertions" row tabulates the inserted labels by class.
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work on the problem.

The Effect of Biphone Models

As discussed in Chapter 3, a key difference between our system and a con-

ventional frame-based HMM recognizer is that ours requires biphone models.

We pointed out that a potential drawback of their use is the relative scarcity

of data for training them. To investigate the effect of biphone models on the

phonetic recognition results, we identified the sequence of models hypothe-

sized by the recognizer for each utterance, identified the biphone models in

the sequence, and computed the recognition rate for all phone tokens aligned

to these models according to the NIST evaluation algorithm. For instance,

where a model sequence includes the aa-r model, the phone sequence /or/ is

hypothesized. If the evaluation algorithm aligns these hypothesized phones to

the sequence /or/ then one out of the two tokens aligned to the biphone model

is correctly recognized. We repeated this procedure for the phone models in

each model sequence and compared the results. Note that these statistics only

pertain to insertion and substitution errors, since deleted phones, by definition,

are not aligned to any model.

No. hypothesized
I Correct(%) Insertions (%) phonesPhone models 69 5 10300

_Biphone models 72 10 2368

Table 4.13: Biphone model performance. Percentages computed over number
of hypothesized labels for nine speakers in both sets.

Table 4.13 summarizes the results of this investigation for the complete

measurement set reduced to 54 discriminants. This configuration was chosen

because it performed the best of all investigated. The results pertain to the

nine speakers in both test sets. Note that in contrast to the results we have

reported previously, the percentages in the table are based on the number of
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hypothesized labels rather then the number of actual transcription labels. The

results indicate that phones aligned to biphone models are actually more likely

to be correct than those aligned to phone models.

While this effect is offset by the higher insertion rate for these models, the

result is still somewhat surprising. It appears that the potential advantages

of biphone models cited in Section 3.5 might outweigh the disadvantage of

training sparsity. Given the number of arbitrary decisions we made in selecting

the biphone model inventory and training sets, their performance can probably

be made even better.

Another point to note is that biphone models account for about 19% of

all hypothesized phones while the statistics of the segmenter on the training

set that were tabulated in Table 3.5 imply that less than 13% of phones are

merged into biphones. Thus, there seems to be a bias towards these models.

It is not clear why this is so. However, the large number of appearances of the

biphone models in the alignments indicates that their observed performance

is a reliable indicator of their ability to model the test data.

Comparison of MDA and GMDA

For the comparison of multiple and grouped multiple discriminant analysis,

we used both techniques to reduce the dimensionality of the 117-measurement

set described in Section 4.7.3. Our choice of this measurement set for the com-

parison was somewhat arbitrary and was made before performing the phonetic

recognition experiments described above. The comparison could as easily have

been made for the 145-measurement set that yielded the best recognition re-

sults.

We also compared two sets of GMDA discriminants, one which included the

four between-group discriminants described in Section 4.7.3 and one which did

not. The results for the three sets of discriminants are displayed in Figure 4.18.

The grouped multiple discriminant analysis results are slightly better than

those for conventional multiple discriminant analysis over most of the range
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Figure 4.18: Comparison of MDA and GMDA. Accuracy is plotted as a func-
tion of the number of discriminants retained in the discriminant analysis. The
results labelled + between-group are for observation vectors that include the
four between-group discriminants defined in Section 4.7.3.
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in number of discriminants retained. We chose the 30-discriminant case to

test whether GMDA is significantly better than MDA and obtained a level of

p = .35. As this did not indicate significance, we redid the comparison after

the four speakers in the second test set were included. For the nine speakers,

the GMDA results were actually slightly worse. Thus, while GMDA produces

comparable results, it does not appear to be an improvement over MDA.

One point to note on the plot is that there is a large increase in GMDA's

performance when 24 discriminants, rather then 18, are used. This suggests

that discriminants between the 18th and 24th are important for discrimina-

tion. In fact, of all three schemes in which 18 discriminants are used, GMDA

performs the worst. It is therefore likely that the GMDA discriminants are

not ordered properly (i.e., some of those between 18 and 24 should have been

included in the first 18). As discussed in Section 4.7.3, there is some question

of how to order discriminants produced by GMDA and so this result is not

surprising.

We have not compared the methods on the other measurement sets in-

vestigated in this chapter. In particular, we have not compared them on the

complete measurement set, which exhibited the highest accuracy over all sets

investigated. Doing so would be worthwhile for evaluating the generality of

the results. Also, as we pointed out in Section 4.7.3, it might be worthwhile to

repeat the experiment using the sonorant and non-sonorant groups. Finally,

as we pointed out in the description of the technique, it might be worthwhile

to experiment with alternative methods for clustering covariance matrices and

for ordering the discriminants. Perhaps the GMDA technique could be shown

to outperform MDA in these cases.

The Best Results: Summary and Comparison to Previous Work

The highest accuracy on the first test set was 55.0% and was achieved with

the complete measurement set reduced to 54 discriminants. For the second

test set, it was 63.2%. For the remainder of the section, we will report results
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Speaker Acc. (,) Cor. (%) Ins. (%) Del. (%) N

jwfm 42 47 5 25 1427
ad 53 59 6 14 1154
ajd 58 64 6 11 1951
sh 58 63 5 16 1260
reg 61 68 8 9 1276
lmb 62 67 4 10 1246
cph 63 70 7 8 1737
wch 66 69 3 12 1780
cth 66 71 5 9 1756

Total 59 65 5 12 13589

Table 4.14: Results by speaker on best-performing measurement set, arranged

in ascending order of accuracy. Abbreviated columns denote accuracy, correct,
insertion and deletion rates. N is number of actual phone labels.

for the joint set of nine speakers. Table 4.14 summarizes the per-speaker and

overall statistics for this set. The mean speaker accuracy was 58.9%. The 95%

confidence interval for the mean is 53.1-64.7%, assuming a t-distribution for

the sample speaker accuracies.

Note that performance for speaker "jwfm" is comparatively very poor. In

particular, there was a very high deletion rate for this speaker. From Ta-

ble 4.11 it can also be seen that for this speaker alone, use of the complete

measurement set did not lead to any improvement over the 73-measurement

set. We have not investigated the reasons for these differences. The wide

variation in performance among speakers is consistent with results reported

in the literature for isolated and continuous speech recognition tasks and sug-

gests that to achieve high recognition accuracies, future work should focus on

understanding and dealing with interspeaker variability. The number of errors

by confusion class, expressed as percentages of total errors and of the number

of input tokens of each class is tabulated in Table 4.15.

As discussed above, Lee and Hon [Lee 89b], Leung et al. [Leung 90], Robin-

son [Robinson 91b] and Digilakis [Digilakis 92], have used the phonetic recog-
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Pruportion of total errors_(%)
Output class

Vow Semi Fric Nas Stop Clos Del Total

Vow 16 2 2 2 1 1 11 34
Semi 3 1 1 0 0 0 4 9

Input Fric 1 0 5 1 1 1 4 12
class Nas 1 0 1 2 1 1 3 7

Stop 2 1 2 0 5 1 4 15
Clos 2 0 3 0 1 0 4 9
Ins 4 1 2 2 2 2 NA 13
Total 29 5 14 7 11 5 30 100

Error rate (%)
Output class

Vow Semi Fric Nas Stop Clos Del Total N
Vow 19 2 2 2 1 1 13 39 4833(36%)
Semi 15 3 3 2 2 0 17 43 1199(9%)

Input Fric 3 1 12 2 2 2 10 32 2165(16%)
class Nas 2 1 3 8 2 3 13 32 1176(9%)

Stop 5 1 5 1 15 2 12 40 2021 (15%)
Clos 4 0 7 1 2 0 10 24 2193(16%)
Ins 31 9 14 12 19 14 NA 100 740(6%)

Table 4.15: Confusions by class for best performing measurement set. Each
cell in top table is the proportion of total errors due to the confusion type
associated with that cell, expressed as a percentage. Each cell in bottom table
is ratio of the number of errors of that confusion type to the number of input
tokens of the given class. For example, the numbers in the vowel-vowel cells
were computed as follows: there were a total of 5520 errors, of which 904, or
16% involved vowel-vowel confusions. These 904 comprised 19% of the 4833
vowels in the test set. Classes in order are vo%ýel, semivowel, fricative, nasal,
stop, and closure. Deletions and insertions tabulated as well. The "insertions"
row tabulates the inserted labels by class. N is total number of labels of each
class. Percentages in right column denote proportion of labels of each type.
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nition task to evaluate approaches to speech recognition. Before discussing

their results, we should point out differences between these experiments and

ours which make a direct comparison impossible.

First of all, each of these researchers used the TIMIT corpus to test their

systems while we used the VOYAGER corpus. We are unsure of the effect of this

difference. Secondly, they used speakers of both genders in testing and training

while we used male speakers only, thus making our task easier. As mentioned

in Chapter 2, we also removed silences and non-speech events before and after

each utterance based on the phonetic transcription rather then model them

explicitly. This probably had a small negative effect on our results, based on

a performance comparison cited in [Robinson 91b] between label inventories

in which silence is and is not retained. Presumably, the recognition rate of

the beginning and ending silences is higher than that of the other labels. A

final point to consider is that previous researchers used the "sx" and "sa"

utterances in the TIMIT corpus for both training and testing. Since the "sx"

set includes only about 450 distinct orthographies and since there were well

over 450 "sx" sentences used in training for each of the experiments , there

was likely considerable overlap between training and testing sentences. Thus,

training was vocabulary-dependent, an effect known to have a positive effect

on performance [Hon 89, Hetherington 91]. Such was not the case in our work,

since 80% of our training data was from the TIMIT corpus while the test data

was drawn from the VOYAGER corpus.

These provisos notwithstanding, making the comparison is useful since it

can provide a rough idea about whether the segment-based HMM's perfor-

mance is comparable to that of other approaches. In fact, we do not believe

that the cumulative effect of the differences between our experiments and

previously reported ones is large enough to change our ultimate conclusion:

namely, that the segment-based HMM recognition performance is competitive

with that of existing systems of similar computational complexity.

Table 4.16 summarizes results of previous experiments and how the condi-
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Reference Acc. (%) Complex. Conditions

Current work 59 4 Described above.
[Lee 89] Frame-based HMM with 48 context-

53 2 independent models. Glottal stop
labels removed for evaluation.

66 NA Same but with 1450 context-dependent
models.

[Leung 90) 47 ? Baseline SUMMIT system (no bigram).
38 labels in evaluation.

50 7 Same but with connectionist classifier.
56 200 Same but with less constrained

segment network.
[Robinson 91a] 75 11 Recurrent neural network. Label inventory

_ _ _ as in [Lee 891.
(Digilakis 92]1 66 80 Stochastic segment model.

Table 4.16: Previously reported phonetic recognition results. Abbreviated
columns denote accuracy and complexity. The complexity is an estimate of

the number of multiplications (in millions) required in the segmentation and

recognition of a three-second utterance. The complexity estimates are outlined

in text. Those with question marks were not estimated. For the context-

dependent model, the computational requirement is probably dominated by

the Viterbi alignment calculation and so the complexity estimate is not a good

measure of it. Except for our work, all experiments used the TIMIT corpus
for testing. Unless otherwise noted, a bigram phonotactic model and context-

independent acoustic models were used.

tions differ from ours. We discuss these results in more detail below. Unless

otherwise stated, a bigram phonotactic model and context-independent acous-

tic models were used in each experiment.

As can be seen from the table, Robinson (Robinson 91b] reports the highest

accuracy, 75%. This represents the state of the art. With the use of 1450

context-dependent models, Lee and Hon [Lee 89b] obtained an accuracy of

66% (74% correct and 8% insertions). Their results with context-independent

models are more relevant for comparing to our work since our models did not

take context into account. 4 With 48 context-independent models, the accuracy

"4 1t can be argued that biphone models take context into account. However, as discussed
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was 53% (64% correct and 11% insertions), also with a bigram model.

The results achieved using context-independent models in [Digilakis 921 are

better than those reported by us or by Lee and Hon. However, as shown in the

table, this system appears to require much more computation, if one considers

the number of multiplications required per utterance for segmentation and

for segment scoring. This is usually a reasonable estimate of computational

complexity for phonetic recognizers since most of the computation is devoted

to these tasks. However, if many models are used, as in the context-dependent

model of in Lee and Hon's work, the Viterbi alignment probably dominates

the computation. Thus, we have not attempted to estimate the complexity

for that case. The "Complexity" column of the table specifies the number of

multiplications in millions for a three-second utterance.

For instance, the system of Lee and Hon uses three vector quantizers to

compute frame scores. In vector quantization, a Euclidean distance must

be computed between a measurement vector and each cluster center. For

a measurement vector with q elements, each Euclidean distance calculation

involves q multiplications. Thus, for a VQ codebook of size K and a vector of

size q, Kq multiplications are required per quantizer. For all three quantizers,

K = 256 and the three vectors used are of size 12,12, and 2. The quantization

must be done once per frame. For the reported frame rate of 100/second, a

3-second utterance would require about 2 million multiplications.

By comparison, the best results obtained by Leung et al. involved a neural
network scorer with 30,000 connections. For the best results reported (56%

accuracy), an average of 7,200 segments had to be scored for the average

three-second utterance. The number of multiplications for an utterance is

thus roughly 7,200 x 30,000 or about 200 million. When a more constrained

search involving 240 segments is used, this number is about 7 million but

accuracy drops to 50%.

above, these only matched 17% of all input phone labels. Additionally, the model parameters
were not smoothed with context-independent estimates, as is usually done when context-
dependent models are used.
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The system in [Robinson 91b] requires about I I million multiplications,

according to [Robinson 91a], which describes essentially the same network as

that used in [Robinson 91b].

A corresponding number is difficult to ascertain from Digilakis' work but

he does report an average of 60,000 "Gaussian computations" per three-second

utterance when using a bigram model and an efficient search algorithm.. Each

Gaussian computation for the block-diagonal "independent frame" model in-

volves a multiplication of a full q x q covariance matrix by a vector of length

q where q is the size of the observation vector. Thus, each involves about q2

operations. For the reported results, q = 37 and the number of computations

is about 80 million.

In our system, the segmentation step requires a multi-level segmentation

to be computed and each segment above the seed regions in the MLS to be

assigned a probability of being a merge, split or good segment. The MLS com-

putation itself requires Euclidean distances computed between each adjacent

pair of 5 ms frames to generate seed regions. If, as is the case here, 40 hair-cell

coefficients are used to represent each frame, this requires 200 x 3 x 40 = 24000

computations. An even smaller number is required to generate the MLS once

the seed regions have been computed. Thus, the total MLS computation is

negligible.

Each merge/split/good probability assignment is performed using vector

.quantization and thus requires a Euclidean distance computation. Our seg-

menter uses a codebook of size 256 and characterizes each segment with 21

measurements. For a typical three-second utterance, probabilities are com-

puted for 120 segments. This is the average of the number of segments in

the multi-level segmentation, not including seed regions. Thus, the segmenter

requires 256 x 21 x 120 "z 0.6 million multiplications.

For phonetic recognition, a weighted Euclidean distance must be computed

for each acoustic segment for each state in each model. This computation re-

quires twice the number of computations as a Euclidean since the weights must
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be multiplied by the elementwise distances. Thus, if the number of states is

S, the number of segments per utterance is T, and the observation vector is

of size q, 2STq operations are required. In our system, S = 464, T - 60 for

a three-second utterance and q = 54. Thus about 3 million multiplications

are required for phonetic recognition and 4 million altogether for both seg-

mentation and phonetic recognition. We should point out that accuracy on

the five-speaker test set when 18 discriminants were used was within 1% of

those obtained for our best system, when 54 discriminants were used. The

recognizer in this case would require a total of 1.5 million multiplications for a

three-second utterance, making the system the least costly of those compared.

We have made this comparison to show that recognizers that employ more

complex PDF models (such as full-covariance Gaussians) or segmenters tend

to achieve better performance. Thus, for example, were we to replace our di-

agonal covariance Gaussian PDF assumption by a more complex model such

as a mixture or full covariance Gaussian, our computation requirements would

increase but presumably our performance would as well, since those models

are more general than diagonal Gaussians. We discuss other possible improve-

ments to the system in the next section.

4.9 Summary and Discussion

This chapter consisted of three parts: an investigation of how acoustic-phonetic

knowledge can be represented in the measurements made on acoustic segments,

a comparison of phonetic recognition performance for different measurement

sets, and a comparison of the phoneti,- recognition performance of the segment-

based HMM to that of existing approaches to speech recognition.

We performed several experiments to investigate knowledge representation.

Each of chese experiments had two aims: to investigate, for its own sake, how

knowledge is represented in the measurements, and to use the results of these

investigations to improve phonetic recognition performance. We were quite
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successful in developing insight into knowledge representation but less so in

applyii.g the results to phonetic recognition.

For example, we showed that formants, which play a large role in theories

of speech perception and production, are not modelled well as a linear combi-

nation of mel-frequency spectral coefficients. However, we were able to build

good models for the first two formants that were valid for most formant values

observed in the data by making nonlinear transformations of the coefficients.

Thus, we showed that the representation of formants by the MFSC's is non-

linear. The nonlinearity suggested that there might be a benefit to adding the

modelled formants to the measurement set. The potential benefit is due to the

fact that decision boundaries computed by the diagonal covariance Gaussian

probability are linear. If phonetic discrimination is strongly related to differ-

ences in formant frequencies among different classes then adding the formants

directly to the measurement would tend to make the decision boundaries more

linear in the space used by the classifier. Thus, the classifier could have a more

accurate model of the decision boundaries and could potentially perform bet-

ter. However, only a small improvement was noted when an estimat- of F2 at

the middle frame of the segment was added to other middle-frame measure-

ments. Adding an estimate of F1 actually reduced performance somewhat.

In another experiment, we chose positions for making spectral measure-

ments in segments adjacent to the one being modelled by optimizing a mea-

sure of class separation for voiced stops. While the results of the optimization

experiment suggested that spectral measurements made at these points would

reduce the number of confusions among stops, the inclusion of these measure-

ments in the phonetic recognizer did not do so. However, it led to a large and

statistically significant improvement in overall performance. Thus, in that ex-

periment, we were successful in applying the knowledge that measurements

made outside segments are important for phone discrimination but were

unsuccessful in focusing this knowledge to reduce the number of a particular

type of confusion.
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Finally, we showed that, as predicted, within-class covariances vary widely

by phone label but clustered well by manner of articulation. This finding led

us to develop an alternative to multiple discriminant analysis that attempts

to overcome its faulty assumption of e4 aal class covariance matrices. The new

method determines a distinct set of discriminants for each group determined

by clustering covariance matrices. We showed that for the group of semivow-

els and vowels, several of the discriminant functions were closely related to

distinctive features, implying that that certain distinctive features are well-

represented linearly in the set of mel-frequency spectral coefficients. However,

we did not observe an improvement in phonetic recognition performance when

using the new method instead of conventional multiple discriminant analysis

to reduce dimensionality.

Thus, we conclude that it is difficult to predict how recognizer perfor-

mance will change when one attempts to improve knowledge representation.

The prediction is difficult mainly because there are many processes that in-

tervene between the steps taken to improve knowledge representation and the

recognizer's final output. The processes include the loss of information due to

dimensionality reduction, mismatches between the actual and assumed prob-

ability distributions for the measurements, and the segmentation process, to

name just three. We believe that to reap the benefits of better knowledge rep-

resentation, it is important to analyze recognizer behavior in detail, focusing

on the effect of these invervening processes. By understanding their effect, one

should be able to build models that better exploit improved knowledge rep-

resentation. In Chapter 6, we present tools for detailed analysis and suggest

how to use the results of the analysis to build better models.

The key result of the second part of the chapter, the comparison among

measurement sets, is that a measurement set consisting of spectral measure-

ments made both within and beyond segment boundaries can achieve signif-

icantly better performance than one consisting of only within-segment mea-

surements Another important result of the comparison is that there appears
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to be little benefit to adding spectral measurements made at the beginning

and end of a segment to a set of measurements made at the middle. As we

discussed in Section 4.8.3, a plausible reason for this result is that the segment-

based HMM does not need such measurements to model the spectral change

within a phonetic region.

Finally, we compared our best phonetic recognition results with those re-

ported in previous work. While several differences between our task and previ-

ous ones make a direct comparison difficult, the phonetic recognition accuracy

we obtained is within the range of previously reported accuracies for systems

of similar computational complexity. We do not believe that the tasks are

different enough to alter our conclusion that the results reported here are

competitive with those of other systems. Given the fact that there was little

attempt to optimize the segmenter, the association rule between segment and

phone label, the HMM topology, or the strategy for training biphones, we are

very encouraged by these results. We are further encouraged by the result

reported in Table 4.13, which suggests that the inclusion of biphone models

does not hurt syste.. :ormance, in spite of the small amount of training

data available for these models.

If an attempt is made to optimize the above choices and to incorporate more

sophisticated PDF and context modelling, we believe that phonetic recogni-

tion performance can improve substantially. At the same time, as stated in

Chapter 3, we believe that the framework is a more convenient one in which

to represent acoustic-phonetic knowledge. If this knowledge can be used to

build models that are more robust than conventional models to factors such

as speaker variability and a noisy environment, the segment-based HMM will

be an attractive alternative for speech recognition.
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Chapter 5

Word Spotting

While the phonetic recognition task presented in the Chapter 4 provides in-

sight into the behavior of the system, it does not address issues that arise in

building word models. Since speech recognizers generally recognize words and

not phones, such issues are important. The main goal of this chapter is to

explore three of these issues by assessing the system's performance on a word

spotting task. The issues we explore are relevant for HMM word modelling, in

general. However, the results we obtain will also provide insight into building

word models within the segment-based HMM framework. Developing such

insight is important if the segment-based HMM is to be applied to continuous

speech recognition.

Another goal of this chapter is to introduce error diagnostic techniques and

to show their utility. These techniques are extended in Chapter 6.

We investigate the following issues in this chapter:

1. the relative effectiveness of training a word model from data specific to

the word vs. building one out of subword models,

2. the effect of the pronunciation network used to represent the word, par-

ticularly whether single- or multiple-pronunciation networks work better,

and

3. the effect of measurement set on word spotting performance.
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Before we discuss these issues and present experimental results, we will briefly

describe the word spotting task and its relationship to the overall aims of the

thesis. Then, the word spotter used in the thesis will be described in detail

with particular attention being paid to the novel algorithms we use for scoring

and performance evaluation. Finally, we present our results and discuss them.

Within the discussion, we introduce an EDA technique we term the segment

score plot for diagnosing errors and present a case study of its use.

5.1 The Word Spotting Task

In general, the task of a word spotter is to determine occurrences of one or

more keywords embedded in other speech and/or noise. Applications include

telecommunications (Wilpon 90, Wilpon 91, Chigier 92], gisting (determining

the subject of discussion by spotting key words) (Rose 91, Rohlicek 92], and

voice editing [Wilcox 92]. Finally, word spotting has also been used in a recog-

nition system for identifying "islands of reliability" about which word string

hypotheses are proposed [Kawabata 89].

In the present study, word spotting task is used as a test bed for inves-

tigating the three issues listed above while avoiding certain complexities en-

countered in building a continuous speech recognizer. Word spotting simplifies

both computation and modelling. It requires less computation than recogni-

tion because it avoids the expensive search needed to determine a complete

word string. Also, the task simplifies the modelling problem by allowing us to

focus our modelling efforts on the words to be spotted rather than all words in

the vocabulary. This contrasts with the word recognition paradigm, in which

each word in the speech corpus being used to test the system would have to

be modelled.

We simplify the task further by building a separate word spotter for each

keyword to be spotted instead of a single spotter that identifies multiple words.

Thus, the issues above can be investigated for each word individually to deter-
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mine if the findings generalize over the complete set of words studied. Because

we emphasize a data analytic approach to understanding system behavior, we

look at a small number of words. These include function words that are short

and often poorly articulated and are thus likely to be confused with fragments

of continuous speech. Words of this sort studied include "what", "where",

"near', "can" and "from.". We also looked at some content words that are

frequent enough in the VOYAGER database to use for training and testing the

spotter. These include "Harvard", "MIT", "nearest", and "Baybank.".

5.2 Algorithms for Acoustic Scoring and Per-

formance Evaluation

5.2.1 Acoustic Scoring

The word spotter's task is to determine occurrences of one or more keywords

W 1, W'2,. . . , Wv embedded in other speech and/or noise. Points where the

word spotter indicates that some keyword has occurred are called putative hits

(Rose 90] for that keyword. Putative hits can be classified as correct detections

and false alarms depending on whether the keyword has occurred. Since in

our work we build a separate word spotter for each keyword, we describe the

scoring and evaluation algorithms for V = 1. In (Marcus 92], generalizations

of these algorithms for particular applications and for the case of V > 1 are

suggested.

Word spotting using HMM's involves defining an HMM for the keyword

W and one or more HMM's for alternative input, be it speech or noise. As in

[Wilpon 90], we refer to the latter as garbage models. The spotter determines

the sequence of keyword and garbage models which forms the best acous-

tic match to the utterance. This determination is made by finding a path

through a network of keyword and garbage models such as that illustrated in

Figure 5.2.1 for the case of a single garbage and single keyword model, where a

path is defined to be a sequence of states belonging to models in the network.
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Figure 5.1: Keyword/garbage model network for a single garbage model and
single keyword model. Dotted lines represent transitions between models.
Details of topologies of keyword and garbage HMM topologies appear later in
text. The illustrated network matches any sequence of keywords and garbage.

The illustrated network matches any sequence of keywords and garbage.

Most existing systems for word spotting use one of two algorithms to de-

termine putative hits:

1. In [Rose 90, Wilpon 90, Wilpon 911, the Viterbi algorithm is used to

find the best path through the network of keyword and garbage models.

Segment sequences in this path which match the keyword model are

labelled as putative hits.'

2. In [Rohlicek 891, Baum-Welch scoring (Rabiner 83] is used to determine

the probability W(t) that the word ends at each segment t. Segments

corresponding to local maxima of W(t) which exceed some threshold

are considered putative hits. Putative hit starting segments are not

determined.

'The existing systems described here are frame-based. We use the term segment to mean
the unit upon which acoustic measurements are made.
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The goal of our scoring algorithm is to compute the estimated probability

W(t,I) that W begins at segment t -1'+ 1 and is t segments long, ending

at segment t, given the sequence of observation vectors Y ,- -, Yt-2 This is

computed for 1 <t < T, 1 < t< tn,, where tn,,,, is a user-selected limit on the

maximum number of segments which can correspond to word W and T is the

total number of observed segments.

Let st be the state in the recognition network at segment t, and SI and SF

be indices of the initial and final states of the keyword model, which is a left-

to-right HMM. Using P(.) to denote a probability density estimate, define the

forward score at(i) = P(yl,..-, Yt, st = i) as the estimated joint probability

density of observing YI, .. , Yt and being in state i after segment t. Thus,

P(vl,-.-, yt) = Z, at(0). Then

V(t, t) P(st-1+1 = StSt = SF, I, ... ,Yt)
P(Yi,... , Y')

"""t-1+1 (-S')P(y,_++,...I y I St = SFJSt-t+I = SI)
Ei a,(i)

(5.1)

The approximation is the usual one made when using Markov models, i.e., the

distribution of the observations from time t - I + 2 on is dependent only on

the state observed at time t - t + 1. The algorithm used to compute Eq. 5.1

is:

1. For all states i and for 1 < t < T, compute at(i) using the Baum-Welch

computation [Rabiner 83].

2. For 1 < t < T, 1 < f < m,•,computeP(yt-e+ 2 ,. Yt, St = SFISC-t+1 = SI)

by sequentially setting st-t+l = S, for all t and performing the Baum-

Welch computation for fi,,l segments at each value of t. Thus, the

keyword model is "slid" along the time axis.
2 For notational simplicity, observation vectors will be expressed as column vectors rather

then row vectors in this section.
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Figure 5.2: Log odds ratios for keyword "how." (a) LOR(t,() for each (t,t)
pair represented by a line segment at height LOR(t, t) whose left and right
endpoints co-occur with those of segments t - I + 1 and t. LOR's below -25
not included. Vertical dashed lines are segment boundaries. (b) Time-aligned
orthographic transcription.

After performing these steps, Eq. 5.1 is readily computed. In the case of

multiple keywords, Step 2 is repeated for every keyword W, for I < v < V to

produce scores W(t, f, v).

For displaying and storing the scores, we perform the monotonic transfor-

mation

LOR(t, t) = ln(W(t, f)/(1 - V(t, t))

where LOR is an abbreviation of log odds ratio. This reduces the scores'

dynamic range.

Figure 5.2 illustrates scores obtained in spotting the word how. The log

odds ratio LOR(t, t) is represented by a line segment at height LOR(t, t) whose

left and right endpoints co-occur with those of segments t - i + 1 and t.

Thus, higher segments represent intervals most likely to be aligned to the
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keyword. Segment boundaries, which are represented by vertical dotted lines,

are not equally spaced on the time axis because our system uses variable-length

acoustic segments. Note that the highest scores occur near the keyword.

In our view, the major advantage our algorithm has over Viterbi decoding

is that it yields keyword scores for every (t, 1) pair while Viterbi decoding only

yields scores for segments where the keyword model is used in the best path.

Thus, our algorithm provides more information for evaluating the system and

we use this information in our performance measure, as we show in the next

section. Additionally, the Baum-Welch score has been shown to yield better

performance than the Viterbi score in certain applications [Schwartz 91].

The advantage of the algorithm over that of [Rohlicek 89] is that it yields

scores for start-end segment pairs rather then for ending segments alone. This

is important for error analysis since it allows both start and end points of false

alarms to be determined.

Our algorithm requires more computation than that of [Rohlicek 89) due

to the inclusion of Step 2 for recovering keyword starting points. However, at

least for our system, the computation in Step 2 is small compared to that of

Step 1.

In general, for a system that spots an arbitrary number of keywords, the

computation in Step 1 is proportional to T[(Ng + N, + N,) + M] where Ng,

N,, and N, are respectively the number of state transitions in the garbage

models, the word models and between the two sets of models and M is the

computation required to compute acoustic segment scores P(y,).

The computation in Step 2 is proportional to TNW4 1AX. where IMa. is the

average over all words of the maximum number of segments to be considered

for each word. Note that the acoustic segment scores computed for word model

states in Step 1 can be reused in Step 2.

We should point out that in [Wilcox 92], another method is used for re-

covering both endpoints of the putative hit. Their method uses a heuristic to

determine the most likely start segment for each putative end segment. Exper-

185



iments to compare the accuracy and computational requirements of the two

methods would be worthwhile but are beyond the scope of this work.

5.2.2 Performance Evaluation

In [Wilpon 91J, it is suggested that there is some debate over how best to

evaluate word spotters and that the controversy largely stems from the fact

that each word spotter's requirements depends on the task for which it is

used. Our approach to the problem is to use a performance measure dependent

only on the spotter's ability to discriminate keywords from false alarms. The

measure is essentially task-independent but can be easily tuned to particular

tasks.

Word spotters have usually been evaluated by operating the spotter at

putative hit thresholds that yield arbitrarily chosen false alarm frequencies,

expressed as false alarms per hour per keyword (fa/h/w). The fraction of in-

stances of the keyword correctly detected (the correct detection rate) is com-

puted at each of these operating points and the average rate is used as an

overall performance measure.

The measure proposed here is different in that test utterances are first

divided into keyword and garbage trials. Keyword and garbage trial scores

based on the log odds ratios LOR(t,t) are computed. Garbage scores above

a given threshold are designated as false alarms and keyword scores above

that threshold as correct detections. The relationship between false alarm

and correct detection rates as the operating point is varied is expressed as a

receiver operating characteristic (ROC) and the area under the ROC is used

as the performance metric.

Figure 5.3 depicts the process of determining trial scores from a corpus of

transcribed speech. The algorithm is:

1. Allocate one keyword trial for each keyword token. For each trial k in

the set of keyword trials determine begin and end segments Bk and Ek
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Figure 5.3: Trial score determination for keyword "from." (a) Trial intervals
for DG = 12, 6 = 1. Solid line represents keyword trial interval. Each dotted
line represents a garbage trial interval. (b) Plot of LOR's. See Figure 5.2
for explanation. The line type used to represent LOR's associated with a
particular trial corresponds to the line type used in (a) for that trial's interval.
The thick lines represent LOR's corresponding to trial scores, e.g., the keyword
trial score is approximately -2.0. For clarity, LOR's below -60 and some others
have been removed. (c) Time-aligned orthographic transcription.
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by setting Bk = bk - 6 and Ek = ek + 6 where bk and ek are the tran-

scribed begin and end times associated with the token and b is "padding"

that accounts for imprecision in the transcription. We will refer to the

(Bk, Ek) pair as a keyword trial interval (KTI).

2. Allocate to garbage trials intervals not associated with a keyword. In

our system, each contiguous portion of the corpus between KTI's is di-

vided into garbage trial intervals (GTI's) of DG segments where DG is

chosen to be roughly the maximum duration of the keyword observed in

the training set. GTI's adjacent to KTI's or to the starts and ends of

utterances may be truncated to fewer than DG segments. We motivate

our choice of DG below. We allow GTI's to extend into KTI's to catch

false alarms that occur when the end of a keyword forms the beginning

of a false alarm and vice-versa. Our current system also allows overlaps

between adjacent garbage intervals but this is of little importance and

will not be discussed further.

3. For each keyword trial k associate all LOR(t,e) such that Bk < t-e+I <

t < E1,, i.e, the log odds ratios for all begin-end segment pairs completely

contained within the keyword's trial interval. The keyword trial score

Xk iý the maximum value of LOR(t,() associated with the trial. The

maximization removes the overlapping putative hits associated with a

single trial.

4. Associate each remaining LOR(t,2) with the garbage trial 9 whose in-

terval's center is closest to t - t/2, the center of the interval spanned

by LOR(t, 1). Remove from consideration any LOR(t, 1) which overlaps

an interval exclusively associated with a keyword trial since it may be

large due to a keyword occurrence rather then due to a false alarm. The

garbage trial score Y9 for each garbage trial g is the maximum LOR(t, f)

associated with the trial.
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Figure 5.4: Receiver operating characteristic. Rates are expressed as percent-
ages. The area over the curve is indicated by shading. There were 26 keyword
trials and 711 garbage trials.

We have set DG to be near the maximum keyword duration because this is

long enough so that trial scores can be considered as independent, i.e., it is un-

likely that a portion of an utterance that acoustically matches the keyword will

cause high scores on more than one garbage trial due to overlapping LOR(t, t)

that get assigned to different trials. At the same time, DG is short enough

that distinct false alarms will all be considered in the evaluation instead of

being collapsed into a single trial score.

Once trial scores have been computed, an ROC is const-.--,-:ted. Figure 5.4

illustrates a sample ROC. In the figure, the area Ao over the ROC is shaded.

The area under the ROC, which is used as a performance metric, is 1 - Ao.

The ROC represents the relationship between the false alarm rate F(77) and

the correct detection rate C(77) for a set of values of the putative hit threshold

r7. To produce as smooth an ROC as possible, 7 is set to each of the garbage
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trial scores.

Formally, let Y(' be the zth smallest value of the set of garbage trial scores

Y, NG and NK be the numbers of garbage and keyword trials, and X be the

sc, of keyword trial scores. For each i a point (Fi, Ci) on the ROC is produced

such that

Fi = I -(i- I)/N 0 and Ci = JJ{Xk E XIXk > Y(i)}IJ/NK-

where U j is the cardinality operator. Thus, F, is the fraction of garbage trials

whose scores are at least as great as Y(0 and Ci is Ehe fraction of keywords

whose trial scores are at least as great as this value. The points (Fo = 1, Co =

1) and (FN,+1 = O, CNG+1 = 0) are added to the ROC as well, representing

7 = TOO.

One attractive feature of this type of ROC is that false alarm and false

rejection rates are similar to recognition error rates in the sense that they are

expressed as fractions rather then errors per unit time. Thus, they may be

easier to interpret by the speech recognition community. In particular, the false

alarm rate can be interpreted as being the error rate over all garbage trials and

the false rejection rate can be thought of as the error rate over all keywords. if

each GTI is about the same duration as a typical keyword, the sum of the two

rates at a particular r/, perhaps weighted by the relative frequency of garbage

and keyword trials, would be similar to a word recognition error rate.

Once the ROC is determined, the correct detection rate can be averaged

over one or more operating points to determine a performance measure anal-

ogous to the (fa/h/w) measure. Such a measure is dependent on both the

spotter's ability to discriminate keywords from false alarms and on the choice

of operating points.

In our work, we prefer to use a measure that is independent of operat-

ing point since we are interested solely in the spotter's discriminption ability.

Thus, we use the area under the ROC ds a performance metric, a larger area

corresponding to better performance. The area, denoted A, is computed using
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the trapezoid rule:

NG 1  NG

A = (Fi- Fi+,)(Ci+Cj+,)i ---0 g E Ci

Note that this can be interpreted as the correct detection rate averaged

over all distinct operating points. It therefore makes use of all of the infor-

mation provided by the ROC, unlike any measure based on arbitrarily chosen

operating points. Additionally, the area under an ROC can be shown to be an

estimate of the probability that given a randomly chosen keyword trial and a

randomly chosen garbage trial, the spotter will correctly classify the two trials

[Green 66]. Thus, the area can be interpreted as a type of error rate.

Another feature of this performance measure is that there exists a non-

parametric significance test for comparing the area under several ROC's pro-

duced for the same set of trials [Delong 881. The test can be used to compare

word spotters on the same task much as McNemar's test is used to compare

recognizers [Gillick 89]. We present without derivation the test for comparing

two spotters, due to [Delong 88], which includes a detailed derivation and ex-

tends the test to the case of an arbitrary number of ROC's. Significance levels

referred to in our work are computed using this test.

Because identical test data are passed to the two spotters, trial intervals

for evaluating the spotters are identical. Let X1,j be the score on keyword trial

k for spotter i with i = 1,2 and Xi be the set of these scores. Similarly, let

Y,, be the score on garbage trial g for spotter i and Y1 be the set of these

scores. Let

Qki = •j{ Y1Yqi < Xki,}I for 1 <k < NK

and

Rgi = {Xkj EXIXk,, >_ YVi} for 1 < 9 < NG

for i = 1,2. Finally, let

1 NvK
=i NK(Q, m)(qk, - Aj) +
z NK(NK - 1) k=-
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NG(NG - Z(R•N - A,)(Rgj - A2 )

for i = 1,2 and j = 1,2. Then, assuming independence of trial scores for a

given spotter, under the null hypothesis that the areas under the ROC A, and

A2 are equal for both spotters, A, - A2 is asymptotically normal with mean 0

and variance zjj - 2zI 2 + z22. Thus, a t-test with the statistic

(A 2 - Ai)/výzii - 2z 12 + z 22

can be used as a significance test. Note that the test only depends on the trial

scores' order statistics, not on their distributions.

For a test set with a small number of speakers, as ours is, this test should

not be applied because the assumption of independence among trials is a poor

one. This issue was discussed in Chapter 4 in the context of phonetic recogni-

tion.

5.3 Word- vs. Subword-trained Models

One choice faced in the design of a speech recognition system is the selection

of an inventory of lexical-acoustic units. As discussed in Section 1.3, in an

HMM recognizer each lexical-acoustic unit consists of an HMM which stores a

parametric representation of the estimated PDF of the sequence of observation

vectors associated with the unit's label. The parameters are determined by

collecting statistics of the segment sequences associated with that label in the

recognizer's training set.

In Chapter 4, we used phone and biphone lexical-acoustic units since the

recognition task was to recover the utterance's phone string. However, in a

word recognition or spotting task, models for words must be built. The most

straightforward way of building such models in an HMM system is to train

the word model from tokens of that word. We refer to such models as word-

trained models. Alternatively, each word can be represented as a sequence or
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network of subword units, with the sequence or network specified by a lexicon,

as discussed in Section 1.3. Then the HMM for each word can be built by

connecting the final state of the HMM for each subword to the initial state of

the HMM of the subword that follows it in the lexicon's representation for the

word. We refer to word models built this way as subword-trained models. If

each subword is a phone, we refer to the models as -phone-trained models.

The drawback of word-trained models is that in a large vocabulary rec-

ognizer it is difficult to obtain enough training data for each word to make

accurate parameter estimates of the observation sequence PDF's. Thus, word

models tend to be used in small-vocabulary systems where it is feasible to

collect many instances of each word, e.g. [Rabiner 83].

In large vocabulary recognizers, phone-trained models have been used, e.g.,

[Jelinek 76]. The problem with this approach is that the acoustic realization

of a phone can depend on the identity of nearby phones and the stress placed

on the syllable in which the phone occurs. We refer to these factors as the

phonetic and prosodic context, respectively. Due to these effects, the PDF for

the observation sequence associated with a phone conditioned on its context

may differ considerably from the unconditional PDF estimated from all data

associated with the phone.

Various systems have employed word models built out of inventories of

lexical-acoustic models intermediate between phone and word models, such

as diphone models [Colla 85, Colla 86, Vicenzi 86]. Other systems have used

distinct phone models to represent the phone in different environments. This

approach has been used to model the effect of left and right phone identity

[Schwartz 84, Schwartz 85, Paul 88, Lee 90] and of word context [Chow 86,

Lee 88] on acoustics. The resulting models are referred to as triphone and

word-specific phone models. Finally, distinct vowel models have been used to

account for the effect of syllable type on vowel duration [Deng 89].

These unit inventories are more sensitive to context than are phone mod-

els but are harder to train reliably because there are less training data for
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each phone in a particular context than for the phone in all contexts. In

systems which use triphone or word-dependent models, the lack of training

data has been compensated for using two methods: interpolation and clus-

tering. Parameters of interpolated models are weighted averages of context-

dependent and context-independent model parameters. The weighting can be

done either manually (Schwartz 84, Schwartz 85, Chow 86] or automatically

(Lee 90]. Clustered models are built by averaging model parameters for differ-

ent contexts together into single models, thus sharing data among the contexts.

This, too, can be done manually, by pre-determining which contexts should

be combined [Deng 88, Deroualt 88], or automatically, using various similarity

measures for clustering [Paul 88, Lee 881. At this time, many state-of-the-art

recognition systems, e.g., [Chow 87, Cohen 90, Paul 91] use clustered triphone

models as their units and these have been shown to outperform either phone

models or unclustered triphone models [Lee 88].

For a more comprehensive review of previous approaches to the unit selec-

tion problem, see [Lee 90].

It is beyond the scope of our work to compare a wide variety of the above

modelling strategies. Thus, we confine ourselves to comparing spotter perfor-

mance of word-trained keyword models to Subword-trained models consisting

phone and biphone HMM's trained as discussed in Chapters 3 and 4. The

motivation for these experiments is to develop some insight into the perfor-

mance of the two types of models within our system rather then to make new

contributions to the problem of unit selection.

We postpone detailed description of the experimental procedure and results

of this comparison to Section 5.5. The experiments examine the effect of the

pronunciation network in conjunction with the mode of training the word

models. Thus, we outline the pronunciation network issue in the next section

before presenting experimental results.
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5.4 Pronunciation Networks: Single vs. Mul-
tiple Pronunciations

5.4.1 Previous Work

To build a subword-trained model for a given word, the allowable sequences

of subwords that compose the word must be specified with a pronunciation

network. Such networks are generally built by beginning with a dictionary

of a single or a few baseforms for each word to be modelled. The baseforms

specify either phoneme strings, e.g., [Cohen 74], or phone strings, e.g., [Lee 881

that are determined from an existing dictionary, e.g., [Cohen 74] or from the

system designer's intuition, e.g., [Weintraub 871. Then, in some cases, phono-

logical rules are applied to convert the baseforms into the final pronunciation

networks. Such rules would convert the phoneme /t/ into the phone /r/ (flap)

in some contexts, for example. Rule systems of this sort are described in

[Cohen 74, Weintraub 87, Rudnicky 87].

As discussed in Section 1.1, both single- and multiple-pronunciation net-

works have been used in continuous speech recognizers. Lee [Lee 88] found that

single-pronunciation networks performed as well as multiple-pronunciation net-

works. SRI researchers [Weintraub 89, Cohen 90] found the opposite to be

true. Weintraub et al. (Weintraub 891 attributed the difference between the

two results to the fact that the networks used in their work allow relatively few

pronunciations per word compared to those of the multiple-pronunciation net-

works used by Lee, and thus provide a more appropriate degree of constraint

on allowable pronunciations [Weintraub 89). These are the only two published

comparisons of single- and multiple-pronunciation networks of which we are

aware.

5.4.2 Current Methodology

In the experiments to be described below, we compare word spotting perfor-

mance for keyword models that allow single and multiple pronunciations. As
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we show below, the networks for each word are based on relative frequencies

of the phonetic transcriptions observed for the word in a set of training data.

As described in Chapter 2, the phonetic transcription for each utterance in

the corpus was determined automatically by first expressing each utterance

as a network of phone labels determined by the application of phonological

rules [Zue 90a] to each word in the utterance. Then, the SUMMIT recognizer

[Zue 89a] was used to determine the sequence of phones that provided the best

acoustic match to the utterance over all those allowed by the network. The au-

tomatic transcription was checked and sometimes modified by a transcriber.

Thus, the relative frequencies of the phonetic transcriptions for each word

and hence the pronunciation networks used in our work are influenced by the

phonological rules, the behavior of the SUMMIT recognizer and the judgment

of the transcriber. We built the pronunciation networks this way because the

methodology was convenient to implement and adequate for the purposes of

comparing single- and multiple-pronunciation networks, not because we advo-

cate such a complicated approach to the problem in general.

5.5 Experiments on Unit Selection and Pro-
nunciation Networks

5.5.1 The Basic Experimental Procedure

In this section, we describe the experiments and results obtained in exper-

ihments for which we compare word- and subword-trained keyword models

represented by several different pronunciation networks. For each keyword

examined the procedure was the same: a set of garbage models was built and

used throughout the experiments. The model for the keyword was varied and

spotter performance evaluated as a function of the keyword model used. The

area over the receiver operating curve was used as a performance metric, as

described in Section 5.2.2. A separate spotter was built for each keyword in-

vestigated. The test set used consisted of the 232 VOYAGER utterances from
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the five male speakers listed in Table 4.6.

In applying the performance evaluation metric for each word, we had to

determine the length of the garbage trial intervals, DG, and had to specify

keyword trial intervals. For each keyword, DG was set to the maximum num-

ber of segments associated with the keyword over all tokens of the keyword

in the training set. In making this computation, a segment was deemed to

be associated with the keyword if at least half of it overlapped the aligned

orthographic transcription region for the token. The parameter is tabulated

for each word in Table 5.1, which appears in Section 5.5.3.

A keyword trial was allocated for each token of the keyword observed in

the test set and also for each token of a word of which the keyword is a root.

For instance, each token of the word "where's" was associated with a keyword

trial interval for the keyword "where." Figure 5.3 of Section 5.2.2 provides an

example of keyword and garbage trial determination for the keyword "from."

The first segment of the keyword trial interval for a keyword token that begins

at time b is the one preceding the segment whose beginning and end times

bracket b. Thus, if 3j and cj, the beginning and end times of segment j,

respectively, satisfy the inequality 83j < b < c., segment j - 1 is set to be

the first segment of the interval. The segment preceding j is used rather then

j itself to allow for the imprecision in the transcription process. The final

segment of the interval is determined in a similar fashion.

For all experiments reported in this section, the baseline measurement set

described in Section 4.2 was used. The set consists of seven hair-cell envelope

principal components measured at the middle frame, seven hair-cell envelope

principal component differences measured across the segment's right edge, and

duration.

5.5.2 The Garbage Network

Two types of garbage networks are used in existing word spotting systems. We

will refer to these as unlabelled and labelled networks. An unlabelled network
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is a single H-MM trained using all non-keyword input. Labelled networks are

trained by labelling non-keyword speech, building different HMM's for speech

associated with different Ia As and connecting the HMM's.

Evidence from previous work suggests that the relative performance of the

two types of network depends on the situation. For instance, in [Wilpon 90],

word spotting was used in a telecommunications application to detect key-

words embedded in sentences. Certain words showed up frequently in the

non-keyword speech. There was little performance improvement when models

of these words were incorporated in an otherwise unlabelled garbage network

that consisted of an HMM that used a mixture Gaussian PDF. In [Rohlicek 89]

an unlabelled garbage network of this type was used as well for a task of spot-

ting one of twenty keywords in continuous conversational speech.

Conversely, Rose and Paul [Rose 90] compared performance obtained with

unlabelled, phone-labelled and triphone-labelled garbage networks and ob-

tained the best results from the phone-labelled network. In that case, the

task was to detect keywords in spontaneous, noisy speech of greater variety

than that of [Wilpon 90].

For our experiments, we chose to use a labelled garbage network in which

the models are the set of phone and biphone models introduced in Chapter 3

and used in the phonetic recognition experiments of Chapter 4. We made this

choice because it is easier to analyze spotting errors if the garbage model is

labelled since the phonetic confusion responsible for each error can be dcter-

mined.

Thus, the garbage network used is almost exactly the network of phone and

biphone HMM's used in the phonetic recognition experiments of Chapter 4.

The resulting keyword/garbage network is illustrated in Figure 5.5. In this

example, the spotted word is "near."

The network was modified slightly for use in the word spotter. First of all,

because the garbage model is supposed to characterize the statistics of non-

keyword speech, all instances of the keyword were removed from the training
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Figure 5.5: Keyword/garbage network for word spotting experiments. In this
example, the spotted word is "near." Final model states are connected to
initial model states. This is represented in the figure with common initial and
final states. However, since a bigram model is used, the arc between the final
and initial common states actually represents distinct arcs between every pair
of models, each with a distinct transition probability.
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set before training the phone and biphone models. Thus, for example, for

the keyword "where", all segment sequences associated with /w/ occurring in
"where" were removed from the training set before training the w garbage

model. Specifically, a phone or biphone segment sequence was removed if

1/4 or more of any segment in the sequence overlapped with the transcribed

keyword interval. The value of 1/4 was determined empirically by noting that

when lower values were used, segment sequences were removed that overlapped

with the keyword due to a slight misalignment between transcription and seg-

mentation boundaries rather then because they were truly associated with the

word. When higher values were used, sequences that truly were associated

with the word were left in the training set. We should point out that while

it is theoretically correct to remove segment sequences associated with each

keyword from the garbage model training set, the number of such sequences

was small compared to the complete training set and so their removal might

not have had much practical effect on word spotter performance.

The second difference between the garbage network and the phonetic recog-

nition network of Chapter 4 is that transition probabilities between models in

the combined keyword/garbage network must take the keyword into account.

For example, for spotting "where", instances of /w/ being followed by /c/

in the "where" were not used in computing transition probabilities between

the corresponding phone models. The removal of these sequences was accom-

plished simply by replacing all phonetic labels in the transcription that are

associated with the keyword with the keyword itself before transition proba-

bilities were computed. For example, the transcription /telmiw~nuz/ of the

phrase "tell me where it is" was modified to become /tElmi[where]xtiz/ where

the brackets are used to denote that the enclosed label is a word rather then

a phone. After this transformation, bigram transition probabilities among

phone and biphone models were computed as described in Appendix B. Fi-

nally, transition probabilities into and out of the keyword must be computed.

In principle, bigram probabilities could be computed with the modified tran-
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scription using the algorithm described in Appendix B, i.e., the keyword could

be treated just as the phones and biphunes are treated in the computation.

In that case, the transition probabilities into and out of the keyword would

be dependent on the previous and following labels, respectively. However, so

as to concentrate on issues of acoustic modelling, we chose not to model the

dependence of key word occurrence on surrounding phonetic context since this

is really a language modelling issue. Thus, the transition probability into the

word was set to be the estimated probability that the word follows any label.

Similarly, the transition probability from the keyword model to each phone or

biphone model was set to the estimated probability that the phone or biphone

label follows any other label. Finally, in accord with the algorithm described

in Appendix B, the probability of the keyword beginning the utterance was set

to be the fraction of utterances in the language training set that begin with

the keyword.

5.5.3 Single-Pronunciation Networks

The first set of experiments we ran compared word-trained keyword mod-

els to subword-trained keyword models that allowed a single pronunciation.

The pronunciation used was that which occurred most frequently in the pro-

nunciation training set. This set included 473 utterances from the ten male

VOYAGER speakers used to train the subword models as well as 780 utterances

from sixteen female VOYAGER speakers.

Training Subword-Trained Models

Each of the single-pronunciation subword-trained models included only phone

models, not biphone models. Figure 5.6 displays an example of such a model,

which was constructed by stringing together the n, ih and axr phone models.

The topology and training method for each phone model was that discussed

in Chapter 3 and each model used the diagonal Gaussian PDF representation

discussed in Chapter 4. Each phone model used to build a word model was
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n ih axr

sI/ SF

Figure 5.6: Single-pronunciation topology for "near." Solid lines are transi-
tions which match an acoustic segment. Thin dashed lines are null transitions,
for which no segment is matched. Subword model names included in figure.
Initial and final word model states marked SI and SF, respectively. The same
topology is used for both word- and subword-trained models.

trained by all instances of that phone in the subword model training set, which

consisted of 2150 TIMIT utterances and 473 VOYAGER utterances from male

speakers, as discussed in Chapter 3. Thus, for example, the n model used

in the model for "near" was trained from all instances of /n/ in the training

set. As shown in the figure, each word model was constructed by connecting

the final state of each phone model in the pronunciation to the initial state

of the following phone model. Table 5.1 enumerates the keywords used, the

most common pronunciation for the word in the pronunciation training set,

the number of instances of each keyword in the model training set, and the

value of DG (in segments) used in the performance evaluation of each keyword

spotter.

Training Word-Trained Models

The word-trained model for each keyword was trained from all tokens of the

keyword observed in the training set. For each such token, the segment se-

quence used to train the model was set to be that whose beginning and end
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Keyword Most common pronunciation NTJ DG
"Harvard hh a r v axr dc) 88 13
MIT eh may tcl t iy 67 15
Baybank bcl b ey bcl b ae ng kcl k 26 16
from f axr m 207 12
where w eh axr 88 10
what w ah tel 56 9
can k ix nx 77 14
near n ih axr 48 9
nearest n ih axr ix s 44 12

Table 5.1: Keywords for word spotting experiments. Most common pronun-
ciation was determined over the pronunciation training set. NT is number
of tokens of the keyword in model training set. DG expressed in number of
segments.

times most closely matched the beginning and end times of the token's in-

terval according to the aligned orthographic transcription. Each word-trained

model employed the same topology as its subword-trained counterpart. This

was done so that different topologies between the two models would not be

confounded with the training mode in interpreting results.

As discussed in Section 3.7, the particular phone model topology employed

made training each phone model straightforward in that the position of each

state in the model uniquely determines the segments used to train it. The

uniqueness is due to the fact that there is only one self-looping state in each

-phone model. However, as can be seen in Figure 5.6, the same is not true for

the word model. Thus, we used the segmental K-MEANS algorithm to train

each word model. The algorithm is described in detail in (Rabiner 891. Briefly,

the algorithm is:

1. Use the subword-trained model as a "seed."

2. For each training token, compute an alignment between the segment se-

quence and the states in the model using the Viterbi algorithm. The

alignment so determined maximizes the segment sequence's acoustic
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score on the model over all allowable alignments. The alignment as-

sociates each segment with a state in the model sequence. Thus, after

each token is so aligned, each state has a set of segments associated with

it.

3. Update the mean and weight vectors for each state in the model based

on the statistics of the training segments associated with that state.

The update formulas are specified in Equations 4.9-4.11. If a state has

fewer than two segments associated with it, the sample variance of each

measurement over the segments associated with the state is undefined

and thus so are the weights. These states are not updated and so retain

the values specified by the seed model.

4. Update the transition probabilities based on the set of state sequences

determined by the alignment algorithm. Specifically, the transition prob-

ability aj between states i and j in the model is given by aj = N2 j1Nm

where Ni, is the number of times that state j follows state i in the set

of state sequences and Ni is the number of times state i is visited over

all the state sequences.

5. Go to Step 2.

The algorithm was iterated five times for each keyword. The acoustic match

score achieved by the Viterbi alignment tended to increase for the first few

iterations before levelling off, indicating that the algorithm had converged to

a locally optimal set of alignments.

Results

The results comparing word- and subword-trained models are tabulated in

Table 5.2. There are two points worth noting. First of all, performance is very

poor for some words, especially given the error rate interpretation of the area

over the ROC given in Section 5.2.2. Also, the spotter appears to perform much
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Area Over ROC (%.)
Subword-trained Word-trained N

Harvard 14.3 6.3 20
MIT 17.8 34.8 26
Baybank 30.9 18.2 14
from 8.1 4.2 60
where 8.3 8.2 60
what 47.4 29.9 56
can 44.4 20.8 20
nearest 7.5 0.2 17
near 8.3 0.8 29

Table 5.2: Word- vs. subword-trained models: Single-pronunciation networks.
N denotes the number of keyword tokens in the test set.

worse for content words such as "MIT" and "Baybank" than it does for some

of the function words, such as "from" and "where." This is surprising because

it is likely that there are more instances of speech fragments confusable with

the shorter and less well-enunciated function words than there are confusable

with the content words. We look more closely at this phenomenon below.

The other interesting result is that word-trained models outperform subword-

trained models for all words with the exception of "MIT."

Of course, this is a function of the particular training set used in the ex-

periments. If there were very little word-specific data for each word, then pre-

sumably the subword-trained models would prevail due to the greater amount

of training data available to them. This can be seen in Figure 5.7, which

plots performance for both types of models over a range of training set sizes

for five of the keywords in the study.3 We selected only five words for this

study to limit the required computation. For word-trained models, the data

point for each training set size was produced by drawing a random sample of

3There are small differences between the results displayed on these plots and those cited
in Table 5.2 due to minor differences in the performance evaluation algorithms used to
produce the two sets of results. In particular, the plots were produced from an older version
of the algorithm. The algorithm used to produce the results cited in the table was used to
generate the results reported throughout the remainder of the chapter.
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Figure 5.7: Effect of training set size on performance of word- and subword-
trained models. Process for generating data points described in text. Lines
through points produced by S-Plus routine supsmu.
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keyword training tokens of that size from the complete training set and using

the sample to train the keyword model. For subword-trained models, each

data point was produced by specifying a fraction of the complete training set

and drawing a random sample of that size for use in training the subword

models. Since with this scheme, training set sizes varied among the subword

models, the co-ordinate representing the number of training tokens was set to

be the minimum number over all subword models. This choice was made on

the assumption that model performance would be most effected by the model's
"weakest link", i.e., the subword with the least training.

An alternative to this approach would have been to provide each subword

model with the same number of training tokens. However, the scheme we

implemented provides a more realistic simulation of different subword model

training set sizes since it preserves the relative training set sizes for each sub-

word available in the complete training set.

We only display results for subword-trained models trained from 20% or less

of the complete training set. Subword-trained performance did not improve

appreciably when more data was used. The lines drawn through the data

points were produced by the S-Plus scatterplot smoother routine supsmu. The

routine fits an estimate of the mean y value of the data as a function of x.

Thus, in this case, the line on each graph represents a smoothed estimate of

the area over the ROC as a function of the number of training tokens.

From these plots, it can be seen that if there is a very small number of

training tokens for a given word, then a subword-trained model trained from

the complete training set will usually perform better. For instance, when fewer

than about ten tokens are used to train the "from" model, the area over the

ROC exceeds 20%, as compared to about 12% for the subword-trained model

that uses all the available training data. However, the number of training

tokens required for word-trained models to prevail is apparently quite small.

In fact, for all words in this figure but "MIT", word-trained models trained

with about 25 or more tokens outperform subword-trained models trained from

207



the complete training set. This result is further evidence of the importance of

phonetic context modelling.

5.5.4 Multiple-Pronunciation Networks

Single-pronunciation networks of subword models fail to account for two sources

of variability in the sequence of subword models that can match a given key-

word. First of all, due to phonological variability, distinct instances of a given

word might be composed of distinct phone sequences. Second of all, due

to segmenter variability a given phone sequence might be best represented

acoustically by more than one model sequence. For example, the sequence

/8i/ might be represented by the two-model sequence dh iy or by the sin-

gle biphone model dh-iy. Related to this issue is the fact that because each

subword model within a single-pronunciation network must match at least one

acoustic segment, the minimum number of segments that can match the single-

pronunciation network is the length of the phone sequence used to represent the

word. For example, from Figure 5.6 it can be seen that the single-pronunciation

model for "near" admits only sequences of at least three segments. This is true

of both subword- and word-trained models since the two have the same topol-

ogy. In this section, we show that removing these restrictions leads to a large

performance increase for many of the keyword spotters. In particular, we con-

sider two types of multiple-pronunciation keyword models, which we term full

networks and skip networks.

Full Networks

Full networks account for both phonological and segmenter variability. Each

such network was built in a two-stage process. In the first stage, the pro-

nunciations occurring in the pronunciation training set were used to derive a

network of phone model labels. We term this the keyword's phone network.

Figure 5.8 illustrates the phone network for "near." Transition probabilities

are printed above each arc.
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Figure 5.8: Phone network for "near." Word-initial and word-final nodes
labelled I and F. Numbers represent transition probabilities.

The algorithm used in the first stage is very simple except for cases in

which there are instances of a multiply occurring phone in the pronunciation

of the word. In our presentation of the algorithm, we enclose in brackets the

special steps required for this case.

1. Allocate a network node for each phone label occurring at least once in

the pronunciation of the word. Label each node with the corresponding

model label. Also allocate special word-initial and word-final nodes.

la. [If a phone label occurs more than once in some pronunciations (e.g.,

the b in "Baybank"), allocate as many distinct nodes with this label

as the maximum number of occurrences of the label observed in any

pronunciation, distinguishing them with distinct indices. (e.g., allocate

nodes bl and b2 in the "Baybank" network.)]

lb. [For each pronunciation in the training set with a phone whose label
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occurs more than once, re-express the pronunciation using a distinct la-

bel for each occurrence of the multiply occurring phone. For instance, if

one token's pronunciation of "Baybank" is bcl b ey bcl b ae ng kcl k,

rewrite it as bcll bi ey bcl2 b2 ae ng kcl k. Each label index refers

to the role that the label plays in the word's pronunciation, not necessar-

ily to its order of occurrence in a particular token. For instance, in this

example b2 refers to the /b/ that occurs before the /m/ in "Baybank,"

not necessarily to the second /b/ in the token. Thus, if the pronunciation

were bcl ey bcl b ae ng kcl k, indicating that the first /b/ burst was

not labelled, it would be rewritten bcll ey bcl2 b2 ae ng kcW k and

the first occurrence of /b/ would be labelled b2. The pronunciations

were rewritten manually.]

2. Compute transition probabilities qAB between every pair of nodes A and

B. Set qAB = NAB/NA where NAB is the number of pronunciations in

which node B follows node A and NA is the number of pronunciations

in which node A occurs.

The second stage of the algorithm for building full networks augments the

phone network with nodes for biphone models. Figure 5.9 illustrates the full

network for "near" that results from the algorithm.

In the second stage, for each pair of sequentially occurring phones for which

there is a biphone model a node representing the biphone model is added to

tfhe network. For example, if node A is followed by node B with a non-zero

probability and there exists a biphone model labelled A-B, then a node must

be added to the network. For instance, the sequence eh axr in the model

for "near" illustrated in Figure 5.8 necessitates adding a node for the biphone

model eh-axr to the network, as can be seen in Figure 5.9. The transition

probability qcA for any node C that can be followed by node A must now be

split among nodes A and A-B. The splitting formula can be expressed a&-

qcA = 4CA + 4C,.A.-B (5.2)
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Figure 5.9: Full network for "near."
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where qcA is the transition probability between nodes C and A in the original

network, 4 CA is the transition probability between the same two nodes in the

full network, and qC,A-B is the transition probability between nodes C and A-B

in the full network. For the illustrated example, the respective probabilities

are .71, .55 and .16. The quantities 4CA and IC,A-B are determined from the

tendency of the segmenter to merge the phone pair AB into a single segment

sequence as estimated from the subword model training set. Specifically,

qcA-B = # segment sequences merged into biphone A-B (53)

qcA # occurrences of phone pair AB

This equation can be combined with Equation 5.2 to determine 4CA.

Note that this method does not model the dependence of the tendency for

the segmenter to merge a phone pair on the keyword in which the phone pair

occurs. We elected to ignore this dependency because there may not have been

sufficient instances of each keyword in the training set to make good estimates

of the transition probabilities if the dependency was taken into account.

Once the pronunciation network was determined, the subword-trained mod-

els were built by connecting final and initial states of the subword HMM's in

the order specified by the network. Word-trained models with the same topol-

ogy were also built with the segmental K-MEANS algorithm described above

using the subword-trained models as seeds.

Skip Networks

Full networks are much "bushier" than single-pronunciation networks, i.e.,

they allow many more pronunciations and have many more states and al-

lowable transitions between models. The bushiness poses several potential

problems for the word spotter. First of all, the networks might be too un-

constrained and thus lead to false alarms. Second of all, there is likely to be

insufficient data for training word-trained full networks. Finally, more complex

models require more computation in a recognizer's search algorithm.
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Figure 5.10: Skip network for "near."

Aside from system performance issues, there is ambiguity in determin-

ing the cause of performance differences between single-pronunciation and full

networks. Differences in performance may be due to the inclusion of biphone

models and/or a wider variety of phone models, or due merely to relaxing

the requirement on the minimum number of segments required to match the

model.

For these reasons, we experimented with skip networks, which are inter-

mediate between single-pronunciation and full networks. An example of such

a network for the keyword "near" is illustrated in Figure 5.10.

Each skip network was designed manually to be nearly as simple as the

corresponding single pronunciation network but to allow a wider variety of

pronunciations. In particular, each skip network tends to allow a minimum

number of segments that is much closer to that allowed by the corresponding

full network. The skip network deals with segmentation variability by treating

a merging of two phones into a single segment sequence as a deletion of one

of the phones. For example, the possible merging of phones /is-/ in "near" is

accounted for by the biphone model ih-axr in the full network for "near." In
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the skip network, it is accounted for by allowing the ih model to be skipped

so that the axr model matches the merged phone pair. The skip probability

was set in this case to be the same as the transition probability from model

n to model ih-axr in the full network. We could have also accounted for this

by allowing the axr model to be skipped so that the ih model matched the

merged pair of phones. However, we judged that this would be a much worse

match since it would not account for the retroflexion of the vowel in "near."

Judgments of this type were made in building all the skip models. No skip

network was built for "from" because there were no biphone models in its

full network. Thus, the skip network would have been no different from the

single-pronunciation network.

For most words, the skip network was composed out of the same phone

models used in the single-pronunciation network, although for the words "can",
"nearest" and "what", extra phone models are included to account for per-

ceived deficiencies in the single pronunciation network. Table 5.3 tabulates

the differences between the models used in single-pronunciation and skip net-

works for these three words. The complete set of skip networks is illustrated

in Figure 5.11. For the sake of clarity, transition probabilities are not shown

in the figure.

Single pronunciation Skip network
can k ix nx kcl k ix nx
nearest nihaxrixs nihaxrixstclt
what w ah tcl w ah tcl t

Table 5.3: Differences in phone models used in single-pronunciation and skip
networks. For all other words, the same models are used in both types of
network.

Table 5.4 compares the three types of networks in terms of complexity and

restrictiveness. In the table, NT is the number of training tokens available for

training the model. "Models" refers to the number of subword models used in
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Figure 5.11: Skip networks. Transition probabilities omitted for the sake of
clarity.
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the network. "States" refers to the number of states for which segment PDF

parameters are stored (i.e., not including states with outgoing nuil transitions

only). This is an important measure of model complexity because the word

spotting algorithm must compute an acoustic score between each observed

segment and each such state. A!so, this is the number of states for which

acoustic segment data is required for word-trained models. Thus, the higher

this number is relative to NT, the more likely the word-trained model will be

undertrained. "Transitions" refers to the number of both null arnd emitting

transitions in the model. This is related to the computation required for

finding a path through the network during spotting. Finally, "Min. Segs."

refers to the minimum number of segments allowed to match the model. From

the table it can be seen that, as stated above, the skip network's complexity is

much closer to the single-pronunciation network's than to the full network's.

Results

Table 5.5 summarizes the spotter performance (measured as area over the

ROC) observed for the set of keywords as a function of the keyword network

type and training mode. The best performance obtained for each word is

displayed in boldface. Because of the small number of speakers in the test set

and the fact that there are few tokens for some of the words, we doubt that

many of the results in the table can be shown to be statistically significant.

However, an informal analysis reveals some trends.

The most consistent behavior among all words is the superiority of skip

and full networks to single-pronunciation networks. As a rough measure of

the superiority of skip networks to single-pronunciation ones, one can consider

the fraction of cases in which converting from single-pronunciation to skip net-

works improves performance when the training mode remains constant. There

are 16 such cases tabulated and in 12 of these the skip network performs better.

For the same comparison between single-pronunciation and full networks, out

of 18 cases, in 15 the full network performs better. Additionally, for the words
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Word NT Network D Models States Transitions Min. Segs.

Single 6 21 48 6
Harvard 88 Skip 6 21 51 4

Full 18 55 148 5

Single 6 21 48 6
MIT 67 Skip 6 21 :0 5

Full 8 27 64 5
Single 9 26 63 9

Baybank 26 Skip 26 75 3
Full 1• 53 147 3

Single 12 27 3
from 207 Skip NA NA NA NA

i Fud 10 32 84 2

~fSingle3 9 3 3
where 88 Skip 3 9 25 2

Full 6 21 60 1

I fSingle 3 19 23 3
Skip 4 12 35 2
Full 11 35 113 1

Single 3 7 19 3

can 77 Skip 4 10 28 2
Full 12 36 105 2

Single 3 9 23 3
near 48 Skip 3 9 24 2

Full 6 18 52 2

Single 5 15 37 5
nearest 44 Skip 7 21 57 3

Full 18 55 164 3

Table 5.4: Comparison of keyword model types. NT is number of training
tokens for word. Other columns defined in text.
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Area over ROC(%

Keyword N Training Single Skip Full
Harvard 20 Subword 14.3 5.8 6.2

Word 6.3 7.7 4.5

MIT 26 Subword 17.8 4.3 4.2
Word 34.8 4.7 23.9

Baybank 14 Subword 30.9 2.8 14.9
Word 18.2 6.3 25.0

from 60 Subword 8.1 NA 5.6

I Word 4.2 NA 2.4
where 60 Subword 8.3 7.0 3.6

Word 8.2 4.9 5.8
what 56 Subword 47.4 7.1 4.1

Word 29.9 7.41 9.6j

can 20 Subword 44.4 25.21 17.6]
Word 20.8 6.5 9.6

nearest 17] Subword 1 7.51 2.01 0-6 |n Word 0.2 4.5 2.5

near 29[ Subword 8.3 12.5 6.81
I Word 0.8 0.9 1.3

Table 5.5: Performance by network and training mode. N is number of key-
word tokens in test data. Best result for each keyword in boldface.

218



"MIT", "Baybank", "what" and "can", for which single-pronunciation net-

works perform particularly poorly using both phone-trained and word-trained

models, there are large improvements in performance when skip networks are

used, and in seven out of eight cases (the exception being the word-trained

model of "Baybank"), performance is much better for the full network than

for the single-pronunciation network.

The relative performance of skip and full networks seems to depend the

training mode. For example, for the eight keywords for which both skip and

full networks were used, in six cases the word-trained skip networks outper-

formed the word-trained full networks. Additionally, in the two cases where

the opposite was true ("nearest" and "where") the advantage of the full net-

works was small while for the words "Baybank" and "MIT", full networks'

performance was much worse. This result might be due to undertraining of

the word-trained full networks, especially in the case of "Baybank", which has

very little training data available to it and for which the full network is par-

ticularly complex. However, such an explanation does not hold for the "MIT"

case. Also, one might expect "nearest" to follow the same trend because it to

has a very complex full network and not much training but this does not seem

to be the case. Thus, while this is a plausible explanation, it is not supported

by the data.

The relative performance of skip and full networks is reversed in the subword-

trained case. Out of the eight keywords with both types of networks, in only

two does the skip network perform better. Because there is more training for

the subword-trained models, this may indicate that given lots of training data,

a more complicated network is better.

Note that, unlike the single-pronunciation case, word-trained models no

longer hold a clear advantage over subword-trained models for the other two

networks. This might be because the word-trained models were less adversely

affected by the use of single-pronunciation models. The states in each of these

models were not forced to be associated with particular subwords and thus
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could better model the variability in pronunciation of the word. Conversely,

the path through a subword-trained model must pass through each subword

regardless of how the word is actually pronounced. We show in the next section

how this can cause poor performance.

Because of these interactions and the relatively small amount of data, it is

difficult to determine a single best combination of training mode and network

type from these results, especially one that would generalize to other work in

speech recognition. However, for these results, at least, the word-trained skip

network is distinguished by having a maximum area over the ROC of 7.7%

while the next lowest maximum over all configurations is 17.6% achieve by

the subword-trained full network. Thus, this seems to be a good choice for

avoiding extremely poor results.

We will return to the comparisons in Section 5.7, where we repeat these

experiments with a more effective measurement set. In the next section, we ex-

amine why the single-pronunciation network performs so badly for a particular

keyword.

5.6 A Case Study of Single- vs. Multiple-
Pronunciation Networks

To develop a better understanding of the advantages that skip and full net-

works hold over single-pronunciation ones, we analyzed the behavior of the

"MIT" spotter in greater detail as a function of the network used. In this sec-

tion, we present a case study comparing the behavior of single-pronunciation

and full networks for subword-trained models. The area over the ROC for

the former was 17.8% and for the latter was 4.3% so this word was a good

candidate for the case study.

The methodology used was to identify trial intervals for which the full net-

work outperformed the single-pronunciation network. It is possible to make a

paired comparison of trial intervals because the intervals are the same regard-
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less of the keyword model used in the spotter. To compare spotters for a given

keyword trial interval, we determined for each spotter the number of garbage

trials which attained a greater score than the score for that keyword trial. It

can be shown that the area over the ROC for a given spotter is directly related

to the sum of this quantity over all keyword trials. Thus, keyword trials for

which this number is high contribute the most to the area over the ROC. Let-

ting this number for keyword trial j be s1 for the single pronunciation network

and fI for the full network, trials for which si greatly exceeded fj were deemed

to be candidates for further examination since they were most responsible for

the high area over the ROC of the single-pronunciation network compared to

the full network. While the same type of analysis could have been applied

to garbage trials, we confined our analysis to keyword trials since there were

fewer of them.

5.6.1 The Segment Score Plot

For each of these trials, spotter behavior was examined in detail using a data

analytic tool we term the segment score plot. The plot is similar to tools used

by the designers of the SUMMIT system at MIT's Spoken Language Systems

Group. Figure 5.12 illustrates the segment score plot for a keyword trial

of the "MIT" spotter. The keyword model used was a single-pronunciation

subword-trained model. The plot consists of six parts which are time-aligned:

(a) a spectrogram, (b) a phonetic transcription, (c) the highest-scoring path

through the keyword/garbage network, (d) the highest-scoring path through

the keyword model over all paths that span the keyword endpoints determined

by the spotter, (e) for the paths in (c) and (d), the segment acoustic scores on

the keyword model relative those on the keyword/garbage network, expressed

as log probabilities, and (f), an orthographic transcription.4 We discuss how

the scores and state sequences are determined below.
41n this example, the automatically determined orthographic transcription seems to be

slightly inaccurate since "to" subsumes the /e/ of "MIT". However, this is irrelevant to the
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Figure 5.12: The segment score plot. (a) Spectrogram. (b) Phonetic transcrip-
tion. (c) State sequence through keyword/garbage network. (d) State sequence
through keyword model. (e) Relative segment scores. (f) Orthographic tran-
scription. Highlighted segment discussed in text. Times are measured from
beginning of utterance.
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To interpret the plot, note that highly negative relative scores belong to

segments which match much more closely to the keyword/garbage network

than to the keyword model. These are the segments that contribute the most to

a low score on a keyword trial. Thus, in the example, the highlighted segment

whose score is -170 is by far the worst-scoring segment. The labels of the

states in the keyword model that are aligned with the keyword trial segments

by the Viterbi algorithm appear just above the segment scores. Each state is

labelled with its associated subword model and its index in that model. The

label tcI2, for example, indicates that the state is the second state of the tcl

subword model that is used to build the model for "MIT." Moving upwards in

the figure, the state sequence through the keyword/garbage network appears

next. For this example, the state sh2 is aligned with the poor-scoring segment.

We return to this example in the discussion of the case study below.

The segment score plot spans the sequence of segments within the key-

word endpoints determined by the spotter scoring algorithm introduced in

Section 5.2.1. The path through the keyword/garbage network associated with

this sequence is computed by first running the Viterbi algorithm to determine

the state sequence that matches the entire utterance and then using the ap-

propri.-te subsequence. The path through the keyword model is determined

by constraining the path to span the endpoints and then using the Viterbi al-

gorithm to determine the best path through the model given the constraints.

The constraints are enforced by associating the initial and final states of the

"model with the initial and final segments of the sequence. Once the paths

are determined, acoustic scores Awe and AGt are computed for each segment t

where Awt is the score of segment t on the keyword model state aligned with

t and AGt is the score for keyword/garbage network state aligned with t. Each

score is the log of the state PDF measured at the segment's observation vector

and is defined in Section 4.8.1 by Equation 4.12. For each segment t, Awe -AGt

is plotted as shown in part (e) of the figure.

discussion.
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Figure 5.13: Comparison of Viterbi and Baum-Welch trial scores. Sample of
200 trials drawn randomly from an experiment with the "MIT" spotter.

Note that the relative segment scores determined in this manner are not

exactly the contributions made by each segment to the trial score determined

by the spotter. This is because the Baum-Welch scoring algorithm, which

sums scores over all possible paths, is used in the spotter, while the Viterbi

algorithm, which computes scores for the best path only, is used for the seg-

ment score plot. However, the advantage of the Viterbi algorithm is that it can

recover the state sequence associated with the best paths through the keyword

and keyword/garbage networks. Because subword labels can be assigned to

each state, the plotted state sequences are useful for making a detailed analysis

of spotter behavior. Also, the two scoring methods produce similar scores as

shown in Figure 5.13, which displays a plot of a random sample of 200 trial

scores against those that would be obtained if the Viterbi scoring were used

instead of the Baum-Welch scoring. The sample was drawn from an experi-

ment with the "MIT" spotter. There is clearly a close relationship between

the two.

224



While in the present study, the segment score plot is implemented in the

context of word spotting, it can be also be used in the continuous speech

recognition problem as well. In the general case, recognizer confusions can be

studied by comparing the best path through the model of the word actually

uttered with that of the state sequence hypothesized by the recognizer.

5.6.2 Case Study Findings

Out of 26 tokens of "MIT" in the test set, we identified seven keyword trials

that were ranked much higher by the full subword-trained network than by

the subword-trained single-pronunciation network. Segment score plots were

produced for both networks for each of these trials and the two plots were

compared for each trial. Figure 5.14 displays one such pair of segment score

plots. The top figure is a copy of the one illustrated in Figure 5.12 and, as

its title indicates, was produced for the single-pronunciation network. The

bottom figure pertains to the same trial as scored by the full network. As the

titles indicate, for the single-pronunciation case, the keyword trial's score was

exceed by almost all (698 out of 711) of the garbage trial scores while in the

full network it was exceeded by a small fraction (12 out of 711) of them.

It is clear from the top plot that the low score is caused primarily by the

segment which is highlighted, since the segment relative score of -170 is by far

the most negative score observed for any segment. The low score is due to

the fact that the single-pronunciation network constrains the state sequence

to include at least one state of the tcl model. This model is supposed to

match /t/ closures but from the spectrogram it appears to be aligned with the

/t/-aspiration. In fact, for this token, the closure is poorly articulated since

the region of the spectrogram aligned with the closure transcription label has

a large amount of energy. Note, too, that the model for the /t/ burst and

aspiration must follow the model for the closure in the pronunciation and thus

is matched to the first part of the /i/, leading to a segment score of -13.

The same segment in the bottom plot is matched by the biphone model
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Figure 5.14: Segment score comparison of si ngle- pronunciation and full net-
works for "MIT" for a trial in which the full network performs better. (a)
Spectrogram. (b) Phonetic transcription. (c) State sequence through garbage-
keyword network. (d) State sequence through keyword model. (e) Relative
segment scores. (f) Orthographic transcription. Highlighted segment discussed
in text. Times are measured from beginning of utterance.
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tcl-t. The segment also attains a fairly low score of -14, perhaps because tule

aspiration is very long in duration and so might match an unvoiced fricative

like /i/ better, as indicated in part (c) of the plot. However, the match is

much better than that attained for the closure and it allows the iy model to

match the /i/, so as to achieve a score of 0 on those segments. While we

show no examples here, the skip network was also able to deal with the poorly

articulated closure, by skipping over the tcl model.

For each of the seven tokens investigated with this method, the same phe-

nomenon occurred. There was always a poor closure and always a very low

score on the segment matched to the tcl model. Also, the seven tokens were

divided among two of the five speakers in the test set, indicating that the

phenomenon is not just an idiosyncrasy of a particular speaker.

To verify that there - a not some other cause for the poor performance of

the single-pronunci .-I - network, we produced segment score plots for keyword

trials that recei.ed high scores from both of the two networks. An example

is illustrated in Figure 5.15. Note that the closure (whose segment is high-

lighted) is well-articulated. The state labels in the keyword/garbage network

path (part (c) of the figure) that consist solely of numbers refer to states in

the keyword model. Thus, for both networks, the best path through the key-

word/garbage network includes the keyword model. Because the best state

sequences through both the keyword model and keyword/garbage network are

the same, the relative acoustic score on each segment is 0, as shown. This

example is typical of the keyword 'rials which received high scores from both

spotters. In all such cases, the closure was well-articulated, indicating that

the chief difference between the two types of network was in their ability to

model the poorly-articulated closure.

One point worth noting is that the high-scoring keyword tokens with well-

articulated closures were mainly associated with different speakers than the

tokens with poorly-articulated closures. This is further evidence of the po-

tential ability of speaker-adaptation schemes to achieve improved recognizer
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Figure 5.15: Segment score comparison of single-pronunciation and full net-
works for "MIT" for a trial in which both networks perform well. (a) Spectro-
gram. (b) Phonetic transcription. (c) State sequence through garbage-keyword
network. (d) State sequence through keyword model. (e) Relative segment
scores. (f) Orthographic transcription. Highlighted segment discussed in text.
Times are measured from beginning of utterance.
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performance my taking advantage of the tendencies of speakers to exhibit con-

sistency from token to token.

5.6.3 Discussion

The case study findings have implications that are specific to the case itself as

well as some that are more general. The most specific interpretation of the case

study is that in the word "MIT", the /t/ closure may be poorly articulated and

if this is not accounted for in the model for the word, spotter performance will

be poor. The possibility that a closure may be poorly realized is well-known

by phoneticians. It has been dealt with in the context of speech recognition

by Lee [Lee 88], for example, who built a single HMM for /t/ that is flexible

enough to allow the closure to be skipped rather then by devoting specific

models to closures and burst-aspirations. Thus, the finding itself is not new.

However, the results of the study indicate the extent to which the failure

to account for phenomena such as this one can affect recognition results. For

the word "MIT", the spotter based on the single-pronunciation keyword model

produced poor scores on almost 1/3 of the tokens solely due to a single phe-

nomenon. While we have not subject the other keywords in the present study

to the same analysis, it is likely the case that the poor performance of single-

pronunciation networks in these cases might be related to a small number of

phenomena as well.

The fact that the segment score plot was successful in identifying the un-

modelled source of variability and could presumably be used to do so in general

is more important than the results of this particular case study. For the prob-

lem of modelling pronunciation variability, the plot can be used to identify

places where a word model is too strict in that it does not account for variabil-

ity. Conversely, it can be used to show that only a limited number of pronun-

ciations must be accounted for in the model, so that underconstrained models

are not employed. This is important because the results of [Weintraub 89] that

were discussed above and those of the present work indicate that models with
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too little constraint can degrade performance just as models with too much

constraint can.

Tools such as the segment score plot can be incorporated in an iterative

process of building pronunciation models. In the first step of the process,

models are built based on prior knowledge. Then errors are analyzed and the

models refined and the process is iterated. By looking for patterns in the data,

possible model refinements might be suggested that would not be considered if

purely automated techniques were used in model building. In this case study,

for example, the fact that the quality of the closure articulation appears to

be highly speaker-dependent might suggest further study that could lead to

improved procedures for speaker adaptation. We discuss this process of model

building in greater detail in Chapter 6.

5.7 The Effect of Measurement Set on Per-
formance

We repeated several of the experiments described in the previous section using

the 39-discriminant measurement set defined in Section 4.7.3. As reported

in Chapter 4, substantially better phonetic recognition results were achieved

using this set than obtained with the baseline set used in the experiments of the

previous section. The main goal of the experiments reported here is to compare

the two measurement sets in a task more closely akin to word recognition to

see if the 39-discriminant measurement set maintained its advantage. Such a

finding would suggest that the results of Chapter 4 can be generalized to a

more complex task such as word recognition.

A secondary goal of the experiments is to test if there are any interactions

between the measurement set used a-ad the relative performance of the various

types of keyword model discussed in the previous section. However, we did not

repeat the experiments involving the single-pronunciation networks because

their overall poor performance in the previously reported experiments made
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Area over ROC (%)
,Baseline 39 Discs. N

Harvard 7.7 0.6 20
MIT 4.7 0.4 26
Baybank 6.3 0.6 14
from 2.4 1.0 60
where 4.9 2.9 60
what 7.4 4.1 56
can 6.5 2.6 20
nearest 4.5 0.1 17
near 0.9 1.9 29

Table 5.6: Effect of measurement set on word spotting performance. All results
for word-trained skip networks except for those for the word "from", for which
word-trained full networks were used. N is number of keyword test tokens.

them unworthy of further study.

Thus, the results of these experiments along with those of the previous

section involve four factors: the keyword, the training mode (subword- or word-

trained), the network type (skip or full) and the measurement set (baseline or

39-discriminant). We first report results comparing the two measurement sets

on the word-trained skip network, which was judged to be the best overall in

the previous section. For "from", we use the full network since no skip network

was built for that word. The results are tabulated in Table 5.6.

The results indicate that the measurement set improves performance in

all cases but one. The effect seems to be more pronounced for content words

than function words and in fact the results for the 39-discriminant set are more

intuitively reasonable than those of the baseline set in that function words now

have higher areas over the ROC than content words. This is to be expected

because they are harder to distinguish from other speech.

The 39-discriminant results for the word-trained skip network are the best

achieved overall for all combinations of training method, network type, and

measurement set we have considered. The superiority of this factor combina-
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Area over ROC (%)
39 Discs. Baseline

Keyword N Training_ Skip j Full Skip ] Full
Harvard 20 Subword 1.9 2.8 5.8 6.2

I Word 10.6 1.8 7.7 4.5

MIT 26 Subword 0.2 0.2 4.3 4.92
( Word 0.4 0.51 4.7 1 23.9

Baybank 14 Subword 2.1 2.0 2.8 14.9
[ Word 0.6 1.4 6.3 25.0

from 60 Subword1 NA 1.5 NA 5.6
Word NA 1.01 NA 2.4

where 60 Subword 6.1 2.0 7.0 3.6
Word .9 3.8 4.9 5.8

what 56 Subword 5.1 4.4 7.1 4.1

Word 4.1 4.5 7.4 9.6

can 20_I Subword 112.2 5.4 25.2 17.6
Word 2.6 3.0 6.2 5 1 9.6

nearest 17 Subword 7.8 0.3 2.0 1 0.61 Word 0.1 0.2 4.5 2.5

near 29 Subword 29.6 110.6 12.5 6.8

1 Word 1.9 1.9 0.9 1.3

Table 5.7: Complete spotting results. Best performing configurations for each
word in boldface (including ties to one decimal place). N is number of keyword
test tokens.

tion can be seen in Table 5.7, which summarizes all the results of this chapter,

except for those obtained with single-pronunciation networks. Of all factor

combinations, this combination performed best or tied for best for five of the

nine words, as can be seen by considering the best result for each word, which

is set in boldface. Also, the area over the ROC for the worst-performing spot-

ter - 4.1% on "what" - was smaller for this combination of factors than for

any other combination. Thus, the word-trained skip network appears to be

the best choice regardless of measurement set.

Inspection of the table also reveals that the 39-discriminant measurement
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set is superior regardless of the other factor levels. For eight out of the nine

words, this measurement set provides the lowest or tied-for-lowest area over

the ROC. Also, the 39-discriminant set achieves higher performance in 28 of

the 34 comparisons where all factors are fixed except for the measurement set,

The word "near" is an anomaly in that for all four combinations of training

mode and network type the baseline set performs better. We have not pursued

an explanation for this result. Another striking result is the huge effect the

measurement set has on the performance achieved for the words "MIT" and

"Baybank" when word-trained full networks are used. Again, this matter has

not been pursued. It may be due to an artifact of the relatively small training

and test sets available for these words.

The table also reveals that the same interaction between training mode and

network type holds for both measurement sets: subword-trained models em-

ploying full networks outperform those employing skip networks. We discussed

the reasons for this in Section 5.5.4.

However, one difference between the results on the baseline and the 39-

discriminant measurement sets is that word-trained models seem to perform

better with the latter measurement set regardless of network type and regard-

less of whether the keyword is a function or content word. For seven out of

eight words, the word-trained skip network outperforms the subword-trained

skip network and for six out of nine words, the word-trained full network out-

performs the skip-trained one. For the words "can" and "near", there are

instances where the word-trained network has a particularly large advantage.

Recall that for the baseline measurement set, the word-trained models only

outperformed subword-trained models for the skip network. One plausible ex-

planation for the apparent interaction between measurement set and training

mode is that the 39-discriminant set on a given segment is based on measure-

ments made well beyond the segment while the only out-of-segment measure-

ments made in the baseline set are made 5 ms after the segment's end. For

a segment associated with a particular subword, the out-of-segment measure-
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ments are particularly dependent on the identity of the phones surrounding

the subword. For example, if a vowel follows a stop consonant, the spectrum

35 ms previous to the start of the first vowel segment is likely to be more influ-

enced by the stop's identity than the vowel's. Thus, for the word "MIT", for

example, the spectrum 35 ms before the start of the first segment associated

with the /i/ will reflect the influence of the /t/. However, the subword-trained

model for the /i/ is trained from instances of [if appearing in all contexts.

Thus, the estimated PDF for the measurements associated with that segment

will not be tuned to the specific context in which the /i/ appears in "MIT."

However, for the word-trained model, the state in the model that tends to

be associated with the /i/ will be trained only from segments for which a /t/

precedes the /i/. Thus, the state parameters will be tuned to the proper con-

text. While the same argument can be made regardless of the measurement

set used and is the justification for using context-dependent modelling in the

first place, it applies to an even larger extent when measurements are made

well beyond the segment boundaries.

The apparent interaction of measurement set and training mode is worth

further study. If it is confirmed, then it is likely that segment-based schemes

that include measurements made beyond segment boundaries will be partic-

ularly able to benefit from modelling context with triphone or word-specific

models for example.

5.8 Summary

In this chapter, we extended the segment-based HMM to word modelling. We

examined several word modelling issues, relevant both to HMM's in general

and segment-based HMM's in particular. The issues we looked at were

1. training mode: i.e., whether a word model was trained from specific

instances of the word or by concatenating context-independent subword

models,
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2. pronunciation network type: i.e, the variability in pronunciation allowed

by the network, and

3. acoustic measurement set.

For each word in the study, the investigation was conducted by gauging the

performance of a spotter for that word as a function of the word model used. In

the course of the investigation, we developed novel algorithms for word spotter

scoring and performance evaluation. The algorithms have several advantages

over those that have been used previously. In particular, they have the ability

to

1. determine both the beginning and ending points of a putative hit,

2. generate a smooth receiver operating characteristic (ROC) in a compu-

tationally efficient manner, and

3. compare word spotters on the same task using a non-parametric signifi-

cance test.

Because the algorithms find both the beginning and ending points of a putative

hit and because they divide incoming speech into discrete "trials", they are

particularly suited to detailed error analysis, one of the main topics of the

thesis.

We found that word-trained models usually outperformed subword-trained

ones. The advantage increased with the restrictiveness of the network. This

finding is probably due to the fact that there are fewer states in more restrictive

pronunciation networks than in less restrictive ones. Thus, the relatively small

amount of data available for training word-specific models does not pose as

much of a problem for the more restrictive networks. Word-trained models

performed better than subword-trained ones even for content words for which

there were a relatively small amount of training data. This finding buttresses

the well-known fact that models which account for phonetic context usually

outperform those that do not.
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The networks that performed best overall were word-trained skip networks,

which were intermediate in flexibility between single-pronunciation and full

networks. Thus, we conclude that while some flexibility in a word model is

desirable, it is disadvantageous to use networks that are overly bushy, since

for word-trained models, overly bushy networks have too many states to train

reliably. We noted, however, that there was an interaction between network

topology and training mode so that when subword-trained models were used,

full networks performed best. Presumably, this occurred because there was

no shortage of training data for subword-trained models. Thus, given enough

training data, it might be advantageous to use networks that allow a large

variety of possible pronunciations. Single-pronunciation networks performed

particularly badly. We attribute their poor performance to their inability to

model either segmenter or pronunciation variability.

We introduced a technique for detailed error analysis termed the segment

score plot and used it to demonstrate that for the word "'MIT," the single pro-

nunciation network failed because it was unable to account for variability in the

realization of stop closures. We concluded from this case study that detailed

error analysis techniques could be useful for discovering model deficiencies.

Finally, we found that the effect of measurement set on performance was

similar to that found in the phonetic recognition task of Chapter 4: a mea-

surement set that included adjacent-segment measurements outperformed one

that did not by a wide margin for almost all words in the study.

For the best-performing choice of training mode, network type, and mea-

surement set, the relative spotting performance among words in the study met

our expectations. Confusable function words such as "can" and "what" were

more likely to be confused with other speech than were content words such as

"Harvard" and "MIT."
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Chapter 6

The Application of Exploratory
Data Analysis to Speech
Recognizer Development

Exploratory data analysis (EDA) encompasses a variety of techniques for ex-

amining a set of data for the purposes of discovering structure in it and for

building statistical models to account for the structure. We believe that the

philosophy and strategies of EDA have a much larger role to play in the devel-

opment of speech recognition systems than they have played thus far. In this

chapter, we outline the major ideas behind EDA, discuss the role they have

played in the work we have presented in previous chapters, extend techniques

developed in Chapter 5 for detailed word spotter error analysis and conclude

with a discussion of why the time is ripe for further use of EDA in speech

recognition development.

The major technical contributions of this chapter are methods for making

detailed diagnoses of speech recognizer errors. We use these methods in a

case study and show that a small number of phenomena are disproportion-

ately responsible for the errors found in the study. Thus, a small number of

improvements in the models would presumably lead to a large performance

increase. While we did not attempt to make these improvements, we discuss

how this could be done were it within the scope of our work.
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6.1 EDA and its Role in Our Work

Rather then provide our own description of EDA, we will quote liberally

from John Tukey, its best known proponent, and M, B. Wilk, using excerpts

from their paper "Data Analysis and Statistics: An Expository Overview."

[Tukey 86].

Tukey and Wilk have this to say about the intent of EDA:

The basic general intent of data analysis is simply stated: to

seek through a body of data for interesting relationships and infor-

mation and to exhibit the results in such a way as to make them

recognizable to the data analyzer and recordable for posterity. Its

creative task is to be productively descriptive, with as much atten-

tion as possible to previous knowledge, and thus to contribute to

the mysterious process called insight.

They also claim "exposure, the effective laying open of the data to display

the unanticipated" to be a "major portion of data analysis." For use in model

building, the authors emphasize the value of an iterative approach in which a

model is fit to the data, the model's residuals (differences between the predicted

and observed values of the data) are examined, and information obtained from

the investigation is used to build a better model. They consider fitting to be

an essential part of data analysis:

The single most important process of data analysis is fitting. It

is helpful in summarizing, exposing and communicating. Each fit

(1) gives a summary description, (2) provides a basis for exposure

based on the residuals, and (3) may have the parsimony needed for

effective communication.

Examination of the residuals is considered a crucial part of the process and

many of the techniques of EDA were developed for this purpose.
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The means for attaining the goals of EDA are summarized by the authors

as follows:

In addition to the two-pronged use of summarization and ex-

posire, including careful attention to residuals, three of the main

strategies of data analysis are:

1. Graphical presentation.

2. Provision of flexibility in viewpoint and facilities.

3. Intensive search for parsimony and simplicity, including care-

ful reformation of variables and bending the data to fit simple

techniques.

Graphical techniques are particularly important for revealing relationships in

the data, especially for large data sets, since humans are believed to be better

at finding patterns in plots of many data points than in tables of numbers.

We have used some of these strategies in previous chapters. Our chief intent

has been to build better subword and word models for speech recognition, not

to find patterns for their own sake or to parsimoniously summarize data for

the purposes of communication to others, although in some cases the results

are of interest in their own right.

For example, the development of the regression model for F, and F 2 de-

scribed in Section 4.4 included almost all the aspects of EDA cited above.

"We first fit a linear model to predict the complete range of the formant and

noted using a scatter plot that the fit was poor in certain ranges. The pattern

of the residuals suggested reducing the range of formants predicted. We did

this and improved the fit. Finally, we reasoned, using previous knowledge of

the relationship between the formants and the MFSC filter outputs, that the

non-linear center of gravity transformation would provide a better fit, particu-

larly if the filter outputs were exponentiated. In the terminology of Tukey and

Wilks, this represented a reformation of the variables and a bending of the data
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to fit simple techniques (in this case multiple regression). The reformation did

indeed lead to a better fit.

Other examples of EDA's use in model building are the perspective plots

used to determine the locations for making out-of-segment measurements in

Section 4.5 and the dendrogram used to display the covariance clustering re-

suits in Section 4.7.3. Finally, the plots of class centers for the vowel/semivowel

discriminants in that section exemplify the use of EDA for insight and com-

munication.

In each of these cases, general-purpose data analytic techniques were used.

In Chapter 5, however, we developed the segment score plot, which is more

specialized to speech recognition. This technique fits into the EDA paradigm

as well. First, we identified trials for which the word spotter performed poorly.

These represent large "residuals" in the sense that the word spotter is a model

for predicting an output (either a keyword or garbage) from an input (a se-

quence of observation vectors). Word spotting errors represent cases in which

there is a large difference between the predicted and observed output. The

same can be said of errors made by word recognition systems.

After identifying the large residuals, we studied them more closely, using

segment score plots to reveal their structure. We recognized poor /t/ closures

from the spectrograms of "MIT" and noted that the scores for segments aligned

to the tcl model were extremely low. Because this pattern occurred in all the

low-scoring keyword trials and never in the high-scoring ones, we could explain

the poor performance of the single-pronunciation models parsimoniously. As

we were not looking for this particular problem, the techniques resulted in

"exposure" of the "unanticipated," in the words of Tukey and Wilk.

We should point out that EDA was not used in this case to build a better

model. In fact, we had suspected that single pronunciation models might be

overly restrictive and so experimented with less restrictive models before the

analysis. However, because the single-pronunciation model's inadequacy can

be attributed to a single rause, we learned that a better model for "MIT"
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might be built by modifying the model to allow deletion of the closure but not

to allow alternate paths. Thus, as we pointed out in Chapter 5, the segment

score plot could be useful for building appropriately restrictive word models.

More generally, we could examine the closure deletions more closely to find

patterns relating deletion occurrences and other factors, such as the speaker's

identity and the position of "MIT" within the sentence. Patterns found in this

way could be used to formulate hypotheses about the relationships between

closure deletion and these other factors and the hypotheses could be tested on

new data. Thus, EDA could be used as a means for hypothesis formulation,

which Good [Good 831 identifies as one of its major aims. If an hypothesis is

confirmed in this manner, a model for predicting closures could be built that

could be incorporated into the word spotter to improve its performance.

However, it is unlikely that most errors are severe enough that they can be

understood with the segment score plot alone. Thus, there is a need to develop

techniques for understanding errors in more detail. This is the subject of the

next section.

6.2 Specialized Techniques for Speech Rec-
ognizer Diagnostics

In the discussion that follows, we will describe each technique and its user

interface. The interface is important because the goal of the techniques is

to communicate information to the system designer in a form that is easy to

interpret. Towards this end, most of the information is displayed graphically.

Also, to be worth the time expended, the techniques must be convenient to

use. Towards this end, they have been implemented on a workstation and are

summoned either by menu or by clicking a mouse at appropriate places on

mouse-sensitive displays. The organization is hierarchical so that clicking on

each display allows the user to explore recognizer behavior at a deeper level.

We illustrate the techniques developed in this section with a case study
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which was aimed at understanding one of the findings of Chapter 5. From

Table 5.7, it can be seen that while for most words in the study, the word-

trained model outperforms the phone-trained one when the 39-discriminant

set is used, the effect is most striking for the word "near." We wished to

determine why this was so by investigating in detail the performance of the

full network word- and subword-trained models. While we ended up focusing

on another phenomenon and never answered the original question, we will

begin the discussion with our initial approach to answering it.

6.2.1 The Paired Trial Scatter Plot

In a study comparing the performance of two speech recognizers or spotters

tested on the same data, it is worthwhile to identify tokens for which the two

systems produce different results. This was the strategy we used in Chapter 5

to learn why the single-pronunciation network performed so badly on the word

"MIT." To conduct such a study in the context of our word spotter, we use the

paired trial scatter plot. Figure 6.1 displays an example of such a plot. The plot

in the figure compares the word- and subword-trained spotters of "near." As

we pointed out in Section 5.6.1, a trial-by-trial comparison of the two spotters

is possible because the trial intervals are the same for both spotters. Each trial

interval is represented on the plot by a point whose co-ordinates represent the

ranks of the scores computed for the trial interval for the two spotters. The

rank is defined in ascending order of scores, so that the rank of the lowest

score is 1, for example.

In this case, there were 1253 trials in all, including 29 keyword trials. The

keyword trial denoted "Text example" was ranked 1022 when word-trained

models were used in the spotter and 743 when phone-trained ones were used.

This is represented by an "o" at the point (1022,743) on the plot. The line

y = x is superimposed on the plot. Thus, keyword trial points that are far

below this line represent trials that are ranked much more highly by the word-

trained- than by the phone-trained spotter. Since for good spotter perfor-
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Figure 6.1: Paired trial scatter plot of phone- and word-trained spotters for
"near." Trial score ranks for each spotter are computed over all 1253 keyword
and garbage trial spotter scores. However, only those trials which score higher
than the lowest-ranking keyword trial are plotted. Aster'sks (*) and o's repre-
sent garbage and keyword trials, respectively. The line y = z is superimposed
on the plot.
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Figure 6.2: Paired trial scatter plot of phone- and word-trained spotters for
"near" - keyword trials only. Keyword trial score ranks for each spotter are
computed over all 1253 keyword and garbage trial spotter scores. The line
y = x is superimposed on the plot.

mance, one wants keyword trials to have a tendency to be ranked higher than

garbage trials, these points represent trials for which the word-trained spot-

ter outperforms the phone-trained one. Conversely, for garbage trials, points

below the line indicate better performance by the word-trained spotter. Note

that most of the keyword trial points are below the line. This indicates that

the word-trained spotter outperforms the phone-trained one overall.

The plot can be simplified by considering only keyword trials, since there

are fewer of these. This is useful if one wants to concentrate on these trials

alone, as we did for the study. An example is shown in Figure 6.2. The keyword
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trial points whose positions are the furthest below this line were the the most

promising ones for gaining insight into the superiority of the phone-trained

models.

However, we were also curious about trials that were ranked poorly by both

spotters. Thus, we clicked on the trial denoted "Text example" and generated

the paired segment score plot illustrated in Figure 6.3.

Note that while the keyword being spotted is "near', the word associated

with the keyword trial in this case is "nearest", since it includes the morph

"near." The thick lines in the plot represent the putative keyword endpoints

for each spotter. The most striking aspect of this plot is that in both cases,

the best path through the keyword model is misaligned with the orthographic

transcription of the keyword. In the word-trained case, the second state of

the n model is aligned with the /iY/ and the second state of the ih model

is aligned with the /iY/ -/r/ sequence. For some reason, the word spotter

avoided a path through the keyword model that was aligned with the /n/ in

"nearest." The phone-trained model also was misaligned in that the best path

did not included the /r/ in "near." We obtained similar results for nearby

points on the scatter plot. The cause of the misalignments appeared to be a

more important problem to study than the superiority of the phone-trained

model. Thus, we decided to focus on it. For the remainder of this section, we

discuss our investigation of the alignment problem, focusing on keyword tokens

that were assigned low scores by the phone-trained spotter. The word-trained

spotter exhibited similar behavior on these tokens.

6.2.2 The Trial Score Scatter Plot

To graphically represent individual spotter trials and allow them to be

conveniently investigated in more detail, we use a scatter plot which arra lges

trials according to their scores, as shown in Figure 6.4. As in the paired

trial scatter plot, the asterisks (*) and o's represent garbage and keyword

trials, respectively. So as to reduce crowdedness, only garbage trial scores that
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Figure 6.3: Paired word- and subword-trained segment score plots for "near"
for trial discussed in text. Top and bottom plots are for word-trained and
phone-trained models, respectively. In both cases, the full network keyword
model and 39-discriminant measurement set were used. (a) Spectrogram. (b)
Phonetic transcription. (c) State sequence through keyword/garbage network.
(d) State sequence through keyword model. (e) Relative segment scores. (f)
Orthographic transcription. Thick lines denote keyword's putative endpoints.
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Figure 6.4: Trial score scatter plot for "near." The asterisks (*) represent

garbage trials and the o's represent keyword trials. The garbage trial and
keyword trial points occupy the top and bottom halves of the y-axis and their
positions along this axis are generated randomly. The letters in each utterancelabel are the speaker's initials and the number is the utterance number for that
speaker. Only garbage trial scores that are higher than the lowest keyword
trial score are plotted.

247



exceed the lowest keyword trial score are plotted. The garbage and keyword

trial points occupy the top and bottom halves of the y-axis respectively and

their positions along this axis are generated randomly.

The user can interact with the plot in one of two ways. In "identify" mode,

clicking on a point causes it to be labelled with an utterance identifier. On the

illustrated plot, each identifier consists of the speaker initials and utterance

number. This is useful for identifying utterances for further study and for

discovering patterns. In particular, since the identifier includes a tag for the

speaker name, the plot can be used to discover speaker-dependencies.

Once the user has identified points for further study, he/she can invoke

"explore" mode. In this mode, clicking on a point brings up a segment score

plot for the represented trial.

We labelled each keyword trial on the plot with its identifier. It can be seen

tnat while most of the lowest keyword trial scores are due to speaker "reg",

few of the high ones are. Thus, spotter performance appears to be highly

speaker-dependent.

The lowest scoring trial is labelled "reg.3." In "explore" mode, we clicked

on this point and brought up the bottom plot of Figure 6.3 so as to investigate

the misalignment problem in more detail.

6.2.3 Forced Alignments

One shortcoming of the segment score plot is that it displays only the highest

storing alignment between the keyword model and the utterance. For a sit-

uation such as that being discussed here, it is more important to know how

segments would be scored if the keyword model was properly aligned to the

keyword. This knowledge would enable the designer to determine why the

improper alignment scores higher than the proper one. To generate this infor-

mation, we "force" the spotter to use a path that is aligned with the keyword

and display a segment score plot for this alignment, as shown in Figure 6.5.

The plot is implemented by making the segment score plot interactive.
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-Figure 6.5: Forced path segment score plot for phone-trained "near" spot-
ter. (a) Spectrogram. (b) Phonetic transcription. (c) State sequence through
garbage-keyword network. (d) Forced state sequence through keyword model.
(e) Relative segment scores for forced path. (f) Orthographic transcription.
Times are measured from beginning of utterance.
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Clicking at the segment boundaries most closely aligned to the word's end-

points causes the spotter to compute the best path possessing those endpoints.

In this case, we specified the end of "near" to be at the segment boundary clos-

est to to the erA of the /r/ in "nearest." The path is then added to the segment

score plot. For clarity, the figure includes the segment score plot for the forced

path only.

From the plot, it can be seen that both of the first two segments are

poorly matched to the model. We will consider each of these segments in

turn. The score for the segment associated with the /n/ in "near" is higher on

the garbage ix-n model than on the keyword's n model. The ix-n model is

actually matching the correct pair of phones. However, the keyword model is

deficient in that it does not include the ix-n subword model. In general, the

full pronunciation networks of Chapter 5 allowed biphone models to account

for segmenter behavior within but not across words. Thus, only the n model

was allowed at the beginning of the word. The finding indicates the spotter

might be improved by allowing biphone models whose right label is n at the

beginning of "near." Determining whether this is so would require further

experimentation since, as we showed in Chapter 5, word models can allow too

much, as well as too little, variability in pronunciation.

The second segment's relative score is even worse than the first's. For

this segment, the word's iy subword model is aligned to the /iy/ in the utter-

ance. This would be fine except that the segment's score on the y model is

substantially higher. Thus, the /iY/ is being recognized as a /y/. The spec-

trogram does not reveal anything unusual about the /iY/ . Thus, the segment

score plot is useful for identifying the segment a being low-scoring but not for

characterizing, at a deeper level, why the confusion occurs.

In particular, to apply acoustic-phonetic knowledge so as to improve the

models, it would be useful to characterize confusions in the space of acoustic

measurements. In this way, areas where models must be improved can be

identified. We outline techniques for doing this in the next few sections.
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6.2.4 Decomposing the Relative Score: The Diagonal
Covariance Case

If one can decompose a segment's relative score into subscores for individual

measurements, one can determine which of the measurements are most re-

sponsible for a phonetic confusion and focus one's attention on those. It turns

out that this decomposition is straichtforward when the state PDF's are mod-

elled as diagonal covariance matrices. Thus, we outline the method for this

case first. In this discussion, we are use the term "measurements" loosely to

include linear transformations of measurements as well.

Let y be the segment's observation vector, and q its length. Then, accord-

ing to Equation 4.12, the keyword state score Aw is computed as

q1 q

Aw -- log21r - -• ,{[(yj - mw,)vwjl2  - logvwA} (6.1)

as derived in Section 4.8.3. Likewise, the garbage model state that best

matches the segment can be represented by a mean vector mG and a vec-

tor of weights VG. The score AG of the segment on the garbage model state is

then
q 1

AG -- log 27r - - (Yj - Me.)Vcjl' - Vcj} (6.2)
2 2 _=1

Letting

O, = [vcj(yj - m )? - [VWj(yj - mwv)(- log -,1 < S < q, (6.3)

the relative score ( = Aw - AG can thus be expressed as

q

S= j. (6.4)
j=1

Thus 0j is the share of the relative score due to the jth measurement. We

will refer to this as the jth relative score share. Measurements with negative

shares contribute to a negative relative score and are thus most responsible

for a phonetic confusion.
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The score decomposition is displayed as a profile plot [Chambers 83, p. 163]

for which each measurement being profiled is labelled by its name. The user

generates the plot by clicking on the appropriate segment in the segment score

plot. An example is displayed in Figure 6.6. The figure pertains to the segment

in Figure 6.5 that was associated with an /iY/ but was recognized as a /y/.

The measurements are the 39 discriminants, whose PDF is modelled with a

diagonal covariance matrix for each state. The measurement name a.Db refers

to the bth GMDA discriminant computed on the group abbreviated a. The

group names and abbreviations are defined in Table 6.1. Note that bars to

the left of the vertical axis correspond to measurements contributing to the

confusion.

Abbreviation Group
vow vowels
nas nasals
stp stops
frc fricatives
CIo closures

nas.vow nasals/vowels (between-group)
stp.clo.frc stops/closures/fricatives (between-group)

nas.clo nasals/closures (between-group)

Table 6.1: Abbreviations of discriminants in observation vector.

The plot indicates that the fifth and tenth vowel discriminants (abbreviated

as "vow.D.5" and "vow.D.10") contribute most to the confusion, although

almost all of the discriminants contribute to some extent. We observed similar

score decomposition profiles for the other low-scoring tokens uttered by speaker

"reg" as well. This indicated that the confusions might all be related to the

same model deficiency.

However, it is unclear from this information how to pursue the investiga-

tion. First of all, the scores on many of the discriminants contribute to the

error. Thus, it is difficult to identify a small number of measurements for
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vow.D1
vow.D2
vow.D3.
vow.D 4
vow.D5
vow.D6
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vow.D8
vow.D9
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Figure 6.6: Relative score decomposition profile - diagonal covariance case.
Barplot labels are names of discriminants. Explanation of names in text. Bars
to the left of the vertical axis correspond to discriminants contributing to the
confusion. For this case, the segment was associated with an /iy/ , and the
keyword and garbage subword model states are iy3 and y3 respectively.
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further study. Additionally, while some of the lower-index discriminants are

similar to distinctive feature values (see Section 4.7.3), the higher ones are not

easily interpretable.

A better approach might be to decompose the relative score in a domain

that is more interpretable. The untransformed measurements, which in most

speech recognizers are based on spectral representations such as MFSC's, are

good candidates for such an approach, since speech scientists are accustomed

to working with spectral representations. In the next section we develop a

technique for decomposing the score in the domain of the original measure-

ments.

6.2.5 Decomposing the Relative Score in the Untrans-

formed Measurement Domain

Derivation

The decomposition of the score in the original measurement space is not

straightforward because the measurement covariance matrix is not assumed

to be diagonal. However, because the segment scores are based on linear

transformations of the original measurements, a generalization of the method

is possible.

We begin the derivation by rewriting Equation 6.1 in matrix notation:
q 1

Aw = -flog 27r- (y - mw)TVw(y - mw) + I log det(Vw) (6.5)
2 2

where Vw = diag(v2, 1 ,. . . ,v) is a q q diagonal matrix whose elements

are squares of the keyword model state's weights. Note that this expression is

valid for any multivariate Gaussian PDF model, not just one with a diagonal

covariance matrix. In the general case, Vw = Xw- 1 , where Zw is the state

covariance matrix.

It will turn out to be convenient to rewrite Equation 6.5 as

Aw - log2r - Dw -r- Zw (6.6)

2
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where

Dw = (y - mw)TVw(y - mw). (6.7)

and
1

Zw = logdet(Vw). (6.8)
2

The first step is to decompose Dw in the space of the original measure-

ments. This quantity is a type of distance between the measurement vector

and the state mean and larger values of it imply lower scores. Let A be the

matrix that transforms the vector of measurements x to the observation vector

y. In our case, A is the product of two transformation matrices: the principal

component transformation of the MFSC's to the MFSPC's and the transfor-

mation of the MFSPC's and other measurements to the discriminants. If the

size of the measurement set is p, A is a p x q matrix with p > q since the

transformation acts to reduce dimensionality. We will continue with the con-

vention introduced in Section 1.3 of expressing measurement and observation

vectors as row vectors. Thus,

YT =ZT A (6.9)

and because the mean of a set of vectors is a linear operation,

W = (6.10)

where jw is the mean of the measurement vectors used to train the keyword

state. In practice, we do not use the actual z and Uw in the computation, for

reasons to be discussed below. Instead we use estimates & and j&w. For the

sake of clarity, we will postpone the definition of these estimates until later.

As we show in the definition of the estimates,

AT(fie _ iw) = Y _ Mw. (6.11)

Thus, combining Equations 6.7 and 6.11 yields

Dw = (;j - 4w)TAVwAT(i -_ iW) (6.12)
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which can in turn be expressed as

Dw = dTUd (6.13)

where
d = c - jiw (6.14)

and

U =AVwAT (6.15)

by definition.

The key idea in the derivation is to assign each measurement an appro-

priate share of the distance Dw. Toward this end, we express the matrix

multiplication of Equation 6.13 in scalar form:

p p

Dw = E Z(dkUkjd3) (6.16)
k=1 j=1

where dk, d3 and ukj are elements of d and U.

Each term in Equation 6.16 for which k 0 j is the product of two mea-

surements' distances from their state means dk and di and the multiplier ukj.

Thus the size of each such element cannot be uniquely attributed to a sin-

gle measurement's distance from its mean. This is what makes the problem

more difficult than the diagonal covariance case, for which the score could be

decomposed into terms that could each be attributed to a single measurement.

One alternative would be to set the jth share of the distance to be the sum

of all terms involving dj. However, in this case, the terms dkuukjd, and djujkdk

are included in both the kth and jth shares so that when the shares are summed

both terms are counted twice. Thus, the sum of the shares is not Dw. This

is undesirable since the whole point of the decomposition is to evaluate each

measurement's contribution to the total segment score.

A better alternative makes use of the fact that Ukj = uj1k, i.e., U is sym-

metric. This is true because Vw is diagonal and therefore symmetric, and

thus U is symmetric, too. Thus, dkukjdj = djujkdk. Thus, it seems reasonable
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to include one of these terms in the Ith distance share and the other in the

kth. In this way each term is counted only once when the shares are summed

and so the shares add to Dw. Also, dkuk.di + djujkdk, the joint contribution

of the two measurements to the distance, is split equally across both shares,

which seems reasonable. Note that the argument is valid as long as Vw is

symmetric and thus holds in general since Vw is a covariance matrix.

The distance share ewk, for measurement k is thus defined as

p
eWk = dk E Ukj d,, I < k < p. (6.17)

j=-

If Equation 6.16 is re-expressed as

p p
Ow =•_, d (u,,dj) (6.18)

k=1 j=1

it is clear that

Dw= _ ewk, (6.19)
k=l

as claimed. Note that dk = 0 implies ewk = 0, so that when a measurement

is equal to its state mean, its share of the distance is 0. Also note that if U

is diagonal, implying no correlation among measurements, ewk = (ukkdk )2, so

the share is proportional to the squared difference between the measurement

and its mean. These are intuitively appealing qualities for the distance share

to have.

Equation 6.17 can be written compactly in matrix notation:

ew = diag ((5i - 4zw)T]AVwAT(i, -_iw) (6.20)

where we have substituted the definitions of d from Equation 6.14 and U

from Equation 6.15 in the expression. An analogous expression can be derived

for eG, the vector of distance shares for the garbage state. Letting Vc =

diag (vt 2 V 2

eG = diag [(i: - i c)T AVGAT(i - i'G) (6.21)

257



It is worthwhile to consider the case where Dw is a Mahalanobis distance

and p = 2 so that

Dw = dC-'d

where C is the estimated covariance matrix for measurements x, and X2.

Letting ak be the estimated standard deviation for Xk, , = 1,2 and p be the

correlation coefficient between the measurements, it is easy to show that

1 = [d1
2  dd 2

e = 2(1 ) p2 -a - 2
and a 1 d2

2  di d2

2(1 - p ) o2 al 0 2

Thus, the first term in each distance share is due totally to the deviation

of the measurement from its state mean and and the second term reflects

the contribution to the distance from the relationship of di to d2. The total

distance accounted for by these terms is proportional to 2p(d1 /Or)(d 2/a 2) and

it is divided equally between both measurement's shares, as discussed above.

To continue the decomposition of Aw, Zw, the term related to the de-

terminant of Vw must be decomposed in the measurement space. The de-

composition is intuitive rather then formal. First, compare Equation 6.1 to

Equation 6.5. They are the same equations but the former describes the de-

composition of Aw in the diagonal covariance case and the latter in the general

case. The equations show that the share of Zw assigned to measurement j

in the diagonal case is log vwi. Thus, this share of Zw is proportional to the

logarithm of the weight put on measurement j. Analogously, the share of Zw

assigned to measurement k in the measurement space should be proportional

to the logarithm of its weight in the computation of Aw. Comparing Equa-

tion 6.12 to Equation 6.5, it can be seen that AVwAT plays the role of the

weighting matrix in the measurement space. As above, we will abbreviate

this matrix as U. Because U is not diagonal, it is not clear how to derive

measurement-specific weights from it. However, it can be seen from Equa-

tion 6.16 that each diagonal element Ukk acts to weight the term d42 and so
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the best choice seems to be the diagonal elements of U. Thus, zWk, the share

of Zw assigned to each measurement k is set to be proportional to logukk.

Thus
lo detV log Ukk

zw 2 log ---U(kk 1 < k < p. (6.22)

In vector form, this can be written

1W=I o det(Vw)[flog[A~wA T]11,. .. ,log(AVwA, T)PPIT (6.23)
Zw 2�log Fpk= log[AVwA Ikk

Analogously,

ZG = I log det(VG) [IogTAVGATh"",lg(AVoAT)pplT (6.24)
2 F~k=1 log[AVGATlkk

Equations 6.17 and 6.22 define the decompositions of the last two terms

in Equation 6.5 in the space of the measurements. Combining them with

Equation 6.5 yields

Aw = - log 27r + J:(z!wk - ewk). (6.25)
2 =

Analogously,

AG = -•1og2'r + 1Z(zak - eGk). (6.26)
k=1

Thus, letting

k= [(zwk - eWk) - (zGk eGk)], 1 < k < pI (6.27)

P

=Aw - AG =• k (6.28)
k=1

and Pk is measurement k's share of the relative score 0.

To complete the derivation, we justify our use of the estimates i and j1w

and define them. In practice, we could use the values x and 1w in the rela-

tive score decomposition. The first is simply the test segment's measurement

vector. The second is the mean of the measurement vectors that were used to

train the keyword state. This could be stored for the purposes of the compu-

tation. However, the word spotter itself cannot reconstruct the measurement
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vector once its dimensionality has been reduced by the transformation A, since

this would necessitate finding a matrix ARv such that

X T=YT Anv = TAAinv (6.29)

The notation signifies the fact that A~iv is a right inverse of A. However, it
can be shown that solving for Ainv is the equivalent of solving p equations

in q unknowns and since p > q, there is no general solution. This is true in

general for dimensionality reduction techniques. By the same reasoning, the

spotter makes no use of the iAw in computing segment scores since this vector

cannot be reconstructed from maw.

Thus, an analysis of the relative score based on the untransformed segment

and mean measurement vectors confounds two processes: dimensionality re-

duction and acoustic modelling in the transformed measurement space. The

analysis we propose deals with only the second of these processes and so is

conceptually cleaner, in our view.

While the untransformed measurement and mean vectors x and tIw are

unavailable to the spotter, we assume that they are represented in the spotter

by their least-squares estimates given the transformed vectors y and mw.

Thus, we use these estimates when decomposing the segment relative score.

We will derive the estimate ic of the measurement vector. The estimate

of the state mean is derived in a similar manner. Consider the least-squares

estimate i, of a single element of z given y. The goal is to find a linear

transformation

;j = c1 + yib,

that minimizes the expected value of x, - ij2. This is of the form of a multiple

regression problem for which y is the vector of regressors and x, is the response

variable. The regression coefficients must be determined for all j, 1 j < p.

Thus, the problem can be framed as a multivariate multiple regression problem

[Johnson 88]

iT = cT + yTB (6.30)
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where B = [b,...bp] and cT = (c 1 .. ,C)T.

To determine the coefficients B, a training set of regressors and explanatory

variables is needed. Let

Y11 ... Yiq
Y=1

Ynil . Yng

be the training set of regressors, centered so that

ZYi =0, 1 <j 5p

and

Xn1 ... Xrnp

be the corresponding vectors of explanatory variables, also centered. Then,

the least-squares solution is

B = (YTy)-1yTX. (6.31)

and

c = m, - Brmy (6.32)

where m. = [1,..., 1]X and my = [1,..., 1]Y, i.e., they are the sample mean

explanatory variable and regressor vectors.

However, X and Y represent untransformed and transformed measurement

data, respectively, and

Y = XA. (6.33)

This is true even when the data are centered. Thus, combining Equations 6.31

and 6.33,1

B = (ATXTXA)-lATXTX (6.34)

and combining Equations 6.32 and 6.33,

c = m.[t - (AB)T]. (6.35)
1It can be shown that the back-transformation of the principal component transformation

that was used to generate Figure 2.1 is a special case of these equations.
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These equations are used to estimate the segment's measurement vector

and the state mean in the space of untransformed measurements. Thus,

S= B Ty + c (6.36)

and

Aw = BTmw + c. (6.37)

The identical method is used to estimate the state mean on the garbage state.

As in Section 2.3.3, we refer to B as the back-transform matrix since it at-

tempts to reverse the transformation of the measurements.

To verify the claim of Equation 6.11, we combine Equations 6.34,6.36 and

6.37 to get

A -iw) = ATBT(y- _mw) (6.38)

= y -m w,

as claimed.

It is necessary to specify untransformed measurement data X to determine

B and c. The most reasonable data set for this purpose is the one that was

used to determine the transformation A in the first place. Thus. in our case,

the data consisted of the composite segments defined in Chapter 4 that were

used as training data for the multiple discriminant analysis.

Equations 6.20, 6.36 and 6.37 can be combined to yield

ew = diag [(V - mw)TB]AVw(y - mw) (6.39)

where we have used the fact that BA = I to simplify the expression. Analo-

gously,

eG = diag[(y - mG)TBIAVG(Y - mG) (6.40)

Elements of the vectors defined by Equations 6.39, 6.40, 6.23 and 6.24 can be

substituted into Equation 6.27 to compute the spectral domain error compo-

nents.
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Case Study Findings

We used this method to analyze the "reg.3" trial. The set of measurements

for which score shares were computed included

1. predicted formants PF 1 , PF 2, and energy (ENGY) at all eight spectral

positions (24 measurements),

2. PPMFSPCI, PMFSPC 1 , FMFSPCi, FFMFSPCI (4 measurements),

3. differences DPMFSPCi = PMFSPCi - PPMFSPC, and DFMFSPCj =

FFMFSPCI - FMFSPCi, 2 < ' < 15 (28 measurements),

4. 40 MFSC's at each of the within-segment positions B, M, A, and E. (160

measurements), and

5. duration

for a total of 217 measurements.

See Section 4.6 for definitions of the abbreviations. It would have been de-

sirable to include only spectral measurements (MFSC's) instead of a mixture

of MFSC's and MFSPC's since spectral representations are better matched

to our knowledge about speech than are their principal components. How-

ever, we were unable to directly use MFSC's of the out-of-segment spectral

positions (or even their differences) because of a peculiarity in the way the

117-measurement set used to compute the discriminants was computed. The

mathematical details behind this are tedious and will be omitted from the

discussion.

Figure 6.7 displays the decomposition in the form of a profile plot. Each of

the bars representing predicted formants, energy, MFSPC's and DMFSPC's

on the barchart is labelled with its measurement's abbreviation. These appear

on the left of the three barcharts. The MFSC's, however, are labelled by their

center frequencies, denoted in kHz; to avoid clutter, not all are labelled. The
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Figure 6.7: Relative score decomposition in untransformed measurement space
- "reg.3" example. Left barchart includes components for MFSPC's, predicted
formants and energy; each bar is labelled with the measurement's abbreviation,
except for DPMSFPC's and DFMFSPC's, which are labelled with their index
only. Middle and right barcharts include components for MFSC's, labelled
by filter center frequency in kHz; to avoid clutter, not all are labelled. For
this segment, the uttered phone is /iY/ , and the keyword and garbage model
states are iy3 and y3, respectively. The relative score for this segment is -12.5.
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position where each set of MFSC's was measured is written vertically to the

left of the frequency labels.

The most salient feature of the chart is the high negative value associated

with APFI2 Almost all the predicted F1 's also have negative error components.

This indicates that, although the segment is associated with an /iY/, its first

formant is more closely matched to the y model than to the iy model. Also,

the shares for the MFSC's in the 400-600 Hz range tend to be negative at

the beginning, middle and average positions, providing further evidence that

the segment's F, value is largely responsible for the confusion. The beginning

MFSC's in the 1000-1400 Hz range also seem to match the y model better

although the average MFSC's in this frequency range match the iy model

better.

To check the consistency of these results, we generated the same plot for

severa, other low-scoring segments associated with /iY/ that were uttered by

speak !r "reg." A typical example is displayed in Figure 6.8 for the trial from

utterance "reg.2." The profile is strikingly similar to that of the previous

example. In fact, the six lowest-scoring keyword tokens uttered by this speaker

exhibited similar profiles, particularly with respect to the share of the relative

score of measurement APFI.

6.2.6 The Segment/State Profile

Description

One .imitation of the score decomposition is that it does not indicate the

manner in which each meas-:rement deviates from the correct model. For

instance, one cannot tell from Figures 6.7 and 6.8 whether APF1 is low or

high compared to its mean value in the iy model. To display this informa-

tion, we developed the segment-state profile, which displays estimates of the

segment measurement and keyword and garbage state mean vectors. It also
2We will refer to the measurements as if they were the actual ones. However, it should

be remembered that they are actually least-square estimates.
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Figure 6.8: Relative score decomposition in untransformed measurement space
- "reg.2" example. Left barchart includes components for MFSPC's, predicted
formants and energy; each bar is labelled with the measurement's abbreviation,
except for DPMSFPC's and DFMFSPC's, which are labelled with their index
only. Middle and right barcharts include components for MFSC's, labelled
by filter center frequency in kHz; to avoid clutter, not all are labelled. For
this segment, the uttered phone is /iY/ , and the keyword and garbage model
states are iy3 and y3, respectively. The relative score for this segment is -15.2.
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includes "confidence bounds" around each state mean that provide a scale for

ascertaining how much each segment deviates from the mean.

Figure 6.9 displays the segment/state profile for the "reg.3" example. In

general, the display consists of a number of panels, each panel pertaining to a

subset of the measurements being profiled. Each panel consists of seven profile

plots. The profiles are of

1. the least-squares estimate of the segment's measurement vector (solid

line in figure),

2. least-squares estimates of the mean vectors for the state that should have

best matched the segment and the c-Ae that actually did (in this case, the

keyword and garbage states, respectively, represented by dotted lines),

and

3. estimates of lower and upper "confidence bounds" for the two states

in question (represented by "o" and "x" for the keyword and garbage

model, respectively).

The estimate of the segment's measurement vector is given by the expres-

sion B Ty + cP where y, as in the previous section, is the set of transformed

measurements, BP is the matrix for back-transforming them to the profiled

measurements, and cp is the constant term required for the estimate. The val-

ues of BP and cp are determined similarly to those of B and c, as outlined in

the previous section. The subscript is used to indicate that the profiled mea-

surements may be different from those of the score decomposition. Thus, they

may be associated with a different back-transform matrix and constant term.

We discuss this further below. The estimates of the keyword and garbage state

means are computed similarly and are given by the expressions B Tmw + CP

and B"mG + c

Finally, the lower and upper confidence bounds for measurement k on the
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Figure 6.9: Segment/state profile for "reg.3" trial. Each panel displays, ac-
cording to the legend at top right, the back-transformed segment measure-

nents, state means, and confidence bounds for the measurement set specified
by the y-axis label. The top two plots in the right column show changes in
the MFSC's between positions PP and P and between positions F and FF
respectively. Duration (DUR) and energy (ENGY) panels are omitted to save
space. The position along the i-axis of each point in the MFSC plots de-
notes the center frequency of the corresponding filter. In some panels, several
confidence bound points are beyond the plot limits and are not shown.
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keyword state are given by

(BPmw + cP)k - KB Vw Bp~kk (6.41)

where Vw, as defined in the previous section, is the inverse of the keyword

state PDF's covariance matrix.

The first term in the expression is the estimated state mean and the second

its estimated standard deviation for the measurement. To derive the latter,

note that c = B Ty, where i is the vector of profiled measurements. Thus,

cov(iplW) = BP (6.42)

where cov(ipjW) is the estimated covariance of the measurement vector as-

sociated with the keyword state and 6.41 follows. By similar reasoning the

confidence bounds for the garbage state are

(B Tmo + cP)k ± V/[B VB'V Bp kk (6.43)

The standard deviation is a reasonable scale for ascertaining, for the two

states in question, the extent to which each segment measurement deviates

from its estimated state mean. Thus, when a segment measurement is outside

the band defined by the confidence bounds, it is far from its expected mean

on that state and probably contributes to a low score on that state.

Case Study Findings

Before interpreting Figure 6.9 in detail, we point out that the measurements

included in the segment-state profile are slightly different from those of the

relative score decomposition. In particular, the latter include spectral (MFSC)

rather then principal component (MFSPC) differences between positions PP

and P and between F and FF (see the top two panels on the right). As we

discussed in Section 6.2.5, this is desirable because spectral measurements are

easier to interpret. The difference is due to the fact that the peculiarity that
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prohibited the measurements' inclusion in the score decomposition does not

apply to the segment-state profile.

To facilitate the interpretation, we present expanded views of the beginning

MFSC and predicted first formant (PF1 ) panels in Figure 6.10. We chose these

in particular because the relative score decomposition suggested that the PF1

measurements and MFSC's whose center frequencies were in the 400-600 Hz

range were largely responsible for the low relative score on the segment.

It can be seen from Figure 6.10a that the first peak in the segment's spec-

trum occurs at roughly 250 Hz. This is likely the segment's F1 at the beginning

of the segment. At the same point, the garbage model's mean F, is apparently

about 350 Hz and the keyword model's is over 400 Hz. Thus, as suggested

by the relative score decomposition, the segment's F, is closer to the garbage

state y3 mean than to :,he keyword model state iy3 mean. Moreover, while

the state mean MFSC's in the range of 400-600 Hz are relatively high due to

the effect of a nearby F1, the segments' are low in this range. The reason for

this is that the segment F, is apparently well below 400 Hz. In fact, the seg-

ment MFSC's in this range are below the word state's confidence band while

they are well within the garbage state's. This agrees with the relative score

shares, which are slightly negative throughout this range for the beginning

MFSC's. Similar behavior can be observed between 1000 and 1800 Hz, again

in agreement with the relative score decomposition.

Figure 6.10b shows clearly that the segment's predicted first formant's
trajectory remains well below the keyword state's lower confidence bound

throughout the segment while remaining at the lower end or just beneath

the garbage model's lower bound. Thus, the findings of the relative score

decomposition and segment/state profiles strongly suggest that the phonetic

confusion between the /iY/ and y is largely due to an unusually low value of

F, for the segment in question.
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Figure 6.10: Expanded panels of segment/state profiles for (a) beginning
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ing to the legend, the back-transformed segment measurements, state means,
and confidence bounds for the measurement set specified by the y-axis label.
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center frequency of the corresponding filter.
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6.2.7 Details of the User Interface for the Relative
Score Decomposition and Segment Score Pro-
files

While we have displayed the relative score decomposition and segment state

profiles as separate figures, in our implementation they share a single display

on the workstation. The display is summoned by clicking on the segment

score plot at the segment to be investigated. The decomposition plot is used to

identify measurements responsible for a low score and the segment/state profile

is used to look at these measurements more closely. Because the complete

segment/state profile, as shown in Figure 6.9, is quite crowded, clicking on a

panel summons an expanded view of it, similar to those in Figure 6.10. Also,

the segment score profile uses color to disambiguate the individual profile plots

that are included in each panel.

It should be emphasized that the segment/state profile takes advantage of

the fact that spectral measurements are naturally ordered by frequency. Thus,

the individual profile plots in each panel are reasonably easy to interpret,

especially if one is accustomed to plots of spectral magnitude. Similarly, the

formant estimates are naturally ordered by time and the profiles resemble

formant trajectories which are familiar to anyone accustomed to spectrograms

or formant trackers. If there were no such ordering in either case, then the

problem of displaying a space of several hundred dimensions would not have

as satisfactory a solution.

This might be the case in a general pattern recognition problem, for which

the features used for discrimination are much more varied than those used

here. Thus, we believe that it is important to take advantage of the particular

structure of speech in designing the data analysis tools. Specifically, the tools

should strive to represent speech in the time-frequency space which is most

familiar to speech scientists.
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6.2.8 Diagnosing Model Deficiencies

In Lhis section, we suggest possible extensions to the techniques presented thus

far. While the extensions are generally applicable to recognizer error diagnosis,

we will discuss them in the cuntext of the case study to keep the exposition

concrete.

We initially defined the error to be the misalignments between instances

of "near" and the keyword's model. However, we have narrowed down the

problem to be a phonetic confusion between /iY/ and /y/ and will discuss

error diagnosis in these terms. Before delving too deeply into the diagnosis, we

should discard the possibility that the speaker actually realized the phoneme

/iy/ in "near" as a /y/. If this were the case, the problem would lie in the

inability of the word model to account for such a pronunciation. By listening

to some of these tokens and looking at their spectrograms, we discarded this

possibility. Thus, the error is really due to a phonetic confusion.

We believe the problem to be a model deficiency rather then some sort

of chance occurrence. This belief is reinforced by the fact that the confusion

recurs for several tokens uttered by the same speaker. Moreover, the analyses

of the previous few sections suggest that the errors are similar in structure

and thus not due to chance. In the language of Tukey and Wilks, the model

residuals are highly structured.

In fact, the relative score decomposition and segment/state profile suggest

that the error can be attributed in large part to a single cause: the failure

of the iy model to account for the possibility of an F1 value as low as those

observed for the segments in question. By identifying a single cause, we can

simplify the diagnostic process by focusing on a low-dimensional subspace of

the original measurement space. This simplification can be pushed to the limit

by focusing on the measurement APFI, the average predicted first formant,

since it is most representative of the F1 value throughout the segment. This

measurement also contributes the most to the low relative score.
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There are two possible causes of the mismatch between the observed APF,

and its mean on stctte iy3: a deficient model of its probability distribution or

an inability of the model to gener..ize from training data. We consider each

in turn.

The PDF model might be poor because the discriminants are not truly

distributed as a multivariate Gaussian. The multivariate Gaussian assump-

tion implies that any linear combination of the discriminants has a Gaussian

distribution [Johnson 88]. Thus, the back-transform B can be used to test

the validity of the PDF model for an individual measurement such as APF1

as follows: Let Y •, be an niy x q data matrix of observation vectors used

to train the state in question. Let b be the column of B and c be the ele-

ment of c that are used to compute the least-squares estimate of APF 1 . Then

APF1 ,,is = Yivb + c is the set of ni, least-square-estimated APF1 values for

these vectors. The sample distribution of APF1,i, can be used to compute a'i

empirical density estimate of APF1 ,j,. This in turn could be compared to the

Gaussian distribution of APF1 predicted from the state PDF parameters. The

mean and stat-lard deviation of any back-transformed estimate's distribution

are given ty the two terms in Equation 6.41.

There exist several EDA techniques for comparing distributions, including

smoothed histograms and normal probability plots [Chambers 831. If this ex-

tension were to be implemented, a convenient user interface would be to allow

these plots to be summoned by clicking on the relative score decomposition

profile at the measurement of interest.

If the Gaussian PDF near the segments' estimated APF1 values were lower

than the empirical density estimate, then the PDF model is likely responsible

for the low segment score. Presumably, the estimated PDF of APF, for a

model that fit the training data better would be closer to the empirical density

estimate. Thus, such a model would likely yield a higher score given the

segment's APFI.

Note that we could compare the PDF's using the actual APF1 values in-
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stead of their estimates. However, as we discussed in the derivation of the

relative score decomposition, this would confound the effects of dimensional-

ity reduction and PDF modelling. For the remainder of this section, we will

assume, for the sake of clarity, that dimensionality reduction is not a prob-

lem. Thus, the diagnostic techniques to be discussed will use the least-squares

APF 1 estimates and we will make no distinction between the APF1 values and

their estimates APF 1 •

If both the Gaussian PDF and empirical density estimate are very low

near the segment APF1 values, then the segment values are atypical of those

seen in the training data. There are a variety of explanations for this. One

is simply that there are not enough training data. Thus, the Gaussian model

parameters may be poor estimates of the population parameters, i.e., those of

the true distribution. This would account for the model's inability to generalize

to previously unseen data. However, this is unlikely a problem in the present

case because the state in question has was trained with over 1000 tokens.

Another possible explanation is that the PDF in the vicinity of the test

segment APF1 values would be higher if conditioned on factors aside from the

phone label. For example, the observed APF1 value might be more likely for

tokens of /iY/ that follow an /n/ than for all tokens of /iY/ . This could be

tested by computing the empirical PDF of all segments used to train state

iy3 that follow an /n/, assuming there were a sufficient number to make a

good estimate of the density in the vicinity of the observed APF1 value. If

this density were higher than the unconditional one, then the use of a context-

dependent model for /iY/ would be suggested. 3

It ib rnore likely that speaker identity must be taken into account, since

all low-scoring keyword tokens due to this speaker exhibit low APF1 values.

Thus, one promising line of investigation would be to look for evidence that

the speaker has a relatively low APF1 in other situations. If this were the case,
3 0f course, it is known that such models improve performance in general and so it can

be argued that we do not need to use EDA techniques to suggest such improvements. We
discuss this issue in more detail in the next section.
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then failure to adapt to the speaker might be the key model deficiency.

While it is unlikely the case here, another type of deficienicy might be the

failure to utilize measurements useful for phonetic discrimination. This prob-

lem is akin to that of too much dimensionality reduction. With too much di-

mensionality reduction, information useful for discrimination is removed from

the measurement set. However, transforming the waveform into the mea-

surement set is itself a form of dimensionality reduction. Brown [Brown 871

pointed out this similarity as well. To diagnose this problem, it is necessary

to identify features of the original waveform that would be useful for distin-

guishing /iY/ from /y/ and that are not represented in the measurement set.

Such a diagnosis must rest on the system designer's prior acoustic-phonetic

knowledge.

The segmentation process might be responsible for loss of information as

well. This is possible regardless of whether the segments are of variable or

fixed duration. With variable-duration segments, a missed phonetic boundary

that does not match a biphone model should be easy to identify from the

segment-score plot, since it includes a spectrogram. In a frame-based system,

"a possible problem is the inclusion in a single frame of a sudden event such as

"a stop burst with a very different acoustic event such as voicing, thus making

identification of the stop difficult. In fact, Brown [Brown 871 noticed this

phenomenon. Again, the segment-score plot should be useful in revealing this

problem.

6.2.9 Summary of Speech Recognizer Diagnostics

'Fable 6.2 summarizes many of the techniques introduced in the last two chap-

ters for diagnosing spotter errors. Items ending in question marks relate to

techniques that were suggested but not implemented.
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Detail Representation User interface Case study findings

Overall Area over ROC Keyboard Phone-trained models
performance superior
Individual Trial score Keyboard Low scores on
trial results scatter plot speaker "reg"
Segment scores Segment score Click on trial Misaiigned tokens

plot score
Forced Forced segment Click on segment /n/-ix-n, /iY/ -y
alignment score plot score plot confusions
Relative score Relative score " Confusion related to
decomposition profile PF, values
Measurement Segment-state Confusion due to
vector vs. profile low PF1

model means
Gaussian vs. Smoothed Click on relative Underestimated APF1
empirical PDF histogram? score profile PDF near segment

value?
Empirical PDF " Insufficient training,
vs. segment score unmodeiled factors?

Table 6.2: Summary of special-purpose EDA techniques. Question marks
denote techniques suggested but not implemented.
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6.2.10 Extending the Techniques

While we have demonstrated these EDA techniques in the context of word

spotting, they could easily be adapted to analyzing the behavior of a contin-

uous speech recognizer. Words or subwords assigned particularly low relative

scores by the recognizer could be flagged and represented in a plot analogous

to the trial score scatter plot. The segment score plot could be applied exactly

as is in the word spotter, comparing scores on the correct word model and its

closest competitor.

The relative score decomposition and segment-state profiles can be used in

their current form by any recognizer that uses multivariate Gaussian represen-

tations. Neither of these techniques relies on the fact that the state PDF's are

modelled with diagonal covariance matrices. Nor do they rely on the fact that

the transformation from the measurement to the observation space uses prin-

cipal components or discriminant analysis. Thus, for example, the techniques

could be used in a frame-based cepstrum-based recognizer which uses a full

covariance matrix to model the PDF to diagnose errors in the spectral domain,

since the cepstrum is a linear transformation of the log spectral energies.

However, the score decomposition does rely on the fact that the log obser-

vation probability can be decomposed into a sum of terms in the measurement

space. This is not true of a recognizer that uses mixture Gaussian PDF models

since the log observation probability or segment score A for a state in such a

recognizer is of the form
Mi

A = log u,f,(y) (6.44)
t=1

where m is the number of mixtures, u, is the weight on each mixture, and

fi(y) is the PDF of the ith mixture evaluated at the observation vector y. We

are confident that even if there is no closed form solution to the problem of

applying score decomposition to the mixture case, good heuristics can be found

for doing so. We believe that this is a worthwhile avenue of research given the

recent evolution towards the use of mixture models in speech recognizers.
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The techniques introduced in this section are only a sample of the possible

uses of EDA in speech recognizer design. There are sure to be situations in

which other special purpose techniques can be used to make specific types of

diagnoses. More important than the techniques themselves is the philosophy

behind them: namely that exploring the data can lead to the generation of

hypotheses that would not have been made otherwise and these, in turn, can

lead to building better models. We discuss this further in the next section.

6.3 How can EDA be Used to Improve State-
of-the-Art Speech Recognizers?

6.3.1 Applying the Strategy

The system designer's ultimate goal, of course, is not to diagnose speech rec-

ognizers but to "cure" them of their errors and we have yet to show directly

how EDA can be used to accomplish this. Until now, in fact, EDA has played

little, if any, such role. The process employed to improve recognizers has been

to:

1. build acoustic models,

2. measure an overall error rate,

3. deal with perceived problems in the models based on general knowledge

about statistical modelling and speech by changing all the models in a

general way.

At this point, the cycle repeats. Changes in the models that lead to error rate

reductions are preserved and others are not.

In this manner, HMM recognizers have progressed from phone models

based only on cepstral measurements and a single VQ codebook [Rabiner 83]

to the current state of the art. The currently best-performing recognizers often

include generalized triphones, cepstral difference measurements, tied-mixture
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continuous density representations, gender-specific models and perhaps dis-

criminative training, e.g., [Cohen 90]. Published reports of the breakthroughs

made along the way Gl not attribute motivations to intensive error analysis

but rather to reasoning based on general principles. For example, triphones

are a response to the problem of coarticulation, cepstral differences to the fact

that spectral changes are often cues to phonetic identity, and gender-specific

models to known differences in speech between the genders. Mixtures and dis-

criminative training, on the other hand can be justified on statistical modelling

grounds. Even without looking at errors, it can be reasoned that vector quaD-

tization introduces distortion while single-mode multivariate Gaussian models

are not robust to deviations from the Gaussian assumption [Bellegarda 90],

and that maximum likelihood approaches are suboptimal when the correct

family of PDF models is unknown [Brown 87].

However, even state-of-the-art recognizers come nowhere close to attaining

human performance. Thus, the models are still deficient. There are two basic

strategies for improving the models and their relative effectiveness depends

on the structure of the errors made by recognizers. The first possibility is

that the errors have little structure, i.e., they are distributed evenly across

different speakers, types of phonetic confusion, and other factors, and cannot

be blamed on gross deviations from the assumed probability model. If such is

the case, then a few specific modelling improvements would likely have little

effect. The best strategy in this case would probably be to build more detailed

PDF models and to collect more training data for making reliable parameter

estimates of these models. We term these quantitative model improvements.

If, on the other hand, the errors are structured, a few specific modelling

improvements should be effective in reducing their number. The ideas for these

improvements might continue to be derived solely from general principles.

These ideas could be tested according to the paradigm outlined above, using

overall error rate to gauge their utility. However, we believe that a more

effective strategy would include the following steps:
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1. Use EDA to diagnose errors on some test data, as in the case study of

Section 6.2.

2. Form hypotheses about the model deficiencies responsible for the errors

based on general principles, e.g., speaker-dependence of Fl.

3. Perhaps use EDA to test the validity of these hypotheses on the same

test data set. For example, in the case study, we could see if the speaker's

F, is relatively low compared to phone model predictions on tokens and

phone models aside from those initially diagnosed.

4. Devise models to remedy these deficiencies. For example, utilize a nor-

malization or adaptation technique to cause the model's prediction of

the speaker F1 to be closer to the realized one.

5. Test the models on the test data to see if they remove the errors originally

diagnosed and also monitor changes in overall performance to see if the

remedy has unintended side effects that reduce overall performance. If

there are side effects then perhaps they can be cured by some other

method. If not, then the particular modification to the models should

not be preserved.

6. Repeat the previous step on new data, monitoring both overall perfor-

mance and errors which the new models were designed to cure. This

is an important step for ensuring that the phenomena identified on the

original test set are general, and not quirks specific to the test set. It is

far more important to do this when using an EDA approach than when

using overall performance measures. Otherwise, there is a real danger

of the approach degenerating into a "rule-based" system, with lots of

model changes that only work on the original test data.

By targeting errors actually made by the recognizer instead of relying on

general principles to generate hypotheses of model deficiencies, we believe that
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faster progress can be made in improving performance, particularly as we

exhaust the hypotheses suggested by general principles. In other words, EDA

can fulfill the goal suggested by Tukey and Wilks of "laying open the data to

display the unanticipated," where in this case the deficiencies are unanticipated

based on general principles.

In a sense, the approach of targeting errors is analogous to automatic dis-

criminant techniques which iteratively alter models in response to errors made

by them. However, there is an essential difference: discriminant techniques

and automatic techniques in general can make quantitative model improve-

ments by changing model parameters in response to errors but there is no

evidence that they can effect qualitative changes in the models, such as the

incorporation of speaker adaptive models where none existed or the inclusion

of new measurements believed to be more invariant across different speakers,

phonetic contexts, or environments.

In our view, it is in making these qualitative changes that human-mediated

methods such as EDA hold the most promise compared to automated tech-

niques. This distinguishes them from other human-mediated model build-

ing techniques such as rule-based systems. Such techniques rely on human

intervention for both qualitative improvements and quantitative model im-

provements such as parameter setting. We believe the latter is better left to

automated techniques.

The findings of the case studies in this chapter and in Chapter 5 lead us to

believe that errors made by speech recognizers are structured and thus can be

cured by qualitative model changes. In both cases, spotter errors were shown

to be caused by one or two phenomena. Moreover, in the case of the poor-

performing single-pronunciation networks, we were able to eliminate the error

by using a less restrictive word model. Although we made this improvement

based on general principles rather then data analysis and only performed the

data analysis after the fact, it is not hard to imagine the reverse sequence of

events. While these are only two cases, they were the only ones we have looked
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at in any depth with data analytic tools, not ones we chose to discuss because

they were particularly interesting. Thus, we predict that if we looked at other

errors as intensively we would find structure as well.

6.3.2 Special- vs. General-Purpose Modelling Tech-
niques

Techniques used to make qualitative model changes can be classified as special-

or general-purpose. Special-purpose techniques devote specialized models to

particular phenomena, thus leading to a heterogeneity of models in the recog-

nizer. A good example is function-word modelling [Lee 88]. Such techniques

are useful when a few phenomena are responsible for a large number of errors

(for example, function word confusions), and are also feasible to use as the

chief methodology when building recognizers specialized to a single task (for

example, the digit recognizer of [Bush 87]). EDA can be particularly valu-

able in suggesting heterogeneous techniques since it can be used to identify

a small subset of phenomena requiring special models. In fact, Bush and

Kopec [Bush 871 made substantial use of EDA techniques in building a high-

performance digit recognizer.

Special-purpose techniques can be implemented in an otherwise homoge-

neous recognizer, as the function-word models are. A second way of imple-

menting them is in a two-pass system, in which the homogeneous recognizer

passes high-scoring hypotheses to special-purpose models for rescoring. The

two-pass paradigm has been advocated recently by Schwartz [Schwartz 92] to

be used in conjunction with N-best search procedures and has been shown to

lead to improved performance in cases where a computationally cheap tech-

nique is used in the first pass and a more expensive one used in the second

[Austin 92]. While these applications tend to use homogeneous models in both

passes, we can envision several profitable applications of a special-purpose sec-

ond pass. For instance, one model deficiency that might be identifiable by EDA

techniques is loss of information due to dimensionality reduction. Remedying
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this by using a longer observation vector might cause overall performance to

drop because of insufficient training data. However, the longer vector might

be successful in remedying certain types of error in a second pass as long as

the correct model can score high enough to be considered.

General-purpose techniques are applied to the complete set of acoustic

models. Examples include mixture models and triphone models. They are

useful in correcting systemic model deficiencies. For example, mixture models

account for deviations from normality and triphone models account for coar-

ticulation, which is not modelled well with context-independent models. EDA

can be used to diagnose such deficiencies. In our case study, for example, it

is quite possible that speaker adaptation or normalization would combat the

observed errors due to speaker "reg" and presumably would be useful in gen-

eral. By focusing on errors whose likely cause is failure to account for speaker

dependence and by determining the structure of these errors, methods for deal-

ing with the deficiencies might be developed that would be hard to conceive

of otherwise.

In the best possible case, the methods would lead to more parsimonious

models. These in turn could lead to both greater robustness and reduced com-

putation. For instance, while increasing the number of mixture components in

a recognizer can lead to increased performance and mixture models can in the

limit be fit to any distribution [Ney 90], more components require more com-

putation and more training data. The same things are true if triphone models

instead of phone models are used. Some of the burden could be reduced if

particular model deficiencies could be identified more precisely and dealt with

more efficiently. For instance, mixtures probably acccunt for speaker vari-

ation, contextual variability, and miscellaneous outliers in the training data

better than do simpler models. If these factors could be extricated from each

other through EDA, each of them might be able to be dealt with specifically,

perhaps leading to simpler models. Again, the role of EDA would be to not

only diagnose deficiencies but to prompt cures that might not otherwise be
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considered.

Note that we have advocated two contradictory approaches to improving

recognizers. The special-purpose techniques tend to increase complexity while

the general purpose ones can potentiaily decrease it through the development

of more parsimonious models. We feel that both approaches have a role to play.

Parsimonious solutions are better when they can be found and implemented

in the existing system since they can lead to simplification. However, if such

solutions cannot be found, heterogeneous ones may be called for.

6.3.3 The Costs of EDA

The benefits of using EDA must be weighed against the time it takes to apply

it, since it is obviously a labor-intensive methodology. Speech recognizers

usually include many parameters and their design involves the use of very large

datasets. Unless effective methods are used for focusing on important details

and processing data rapidly, the costs will outweigh the benefits. We believe

that the hierarchical organization of plots introduced in Section 6.2 is a useful

paradigm in this regard, since each level highlights possible areas of model

deficiency that can be investigated at the a more detailed level with a mouse

click. For very large data sets, automatic techniques could be used to find

tokens which are above a certain "importance threshold" (for example those

with very low relative scores). Alternatively, small random samples of a large

data set could be studied intensively. Another key point in making the analysis

tractable is to reduce the dimensionality of the phenomena being studied,

which was a goal of the score decompositic-.. Dimensionality reduction has

also been suggested in [Good 83] as an important EDA technique.

A second cost is the time required to implement the analysis tools. Soft-

ware packages such as S-Plus designed especially for data analysis make the

implementation more feasible. All the plots introduced in Section 6.2, includ-

ing the spectrogram, were composed of high-level S-Plus plotting routines.

Additionally, the S language [Becker 88], upon which S-Plus is based, has a
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fairly rich set of data structures and is fairly flexible. Thus, the data manipula-

tions required for implementing the techniques were straightforward to write.

While we carried the use of S to an extreme ana wrote almost all the code

for training and recognition in it, this is not necessary since facilities exist for

importing binary data into S-Plus. There may be other packages convenient

for implementing these techniques as well.

We end our discussion of the possible drawbacks of using EDA by warning

that there is always a danger of jumping to unwarranted conclusions prema-

turely. A peculiarity in the data being analyzed might be confused with a real

effect, especially if the observed phenomenon is in accord with one's precon-

ceived ideas about the data. Diaconis [Diaconis 85] calls this "magical think-

ing," which he defines as the "inclination to seek and interpret connections

between the events around us, together with our disinclination to revise belief

after further observation." It is to avoid this phenomenon that we suggested

above the importance of testing models on previously unseen data. Diaconis

offers this, and other suggestions as well, for avoiding the problem. This so-

lution may be costly in terms of the amount of data needed to practice EDA.

Again, the costs must be weighed against the benefits.

6.4 Summary

In this chapter, we have introduced the methodology of exploratory data anal-

ysis, related it to some of the work of previous chapters, and introduced tech-

niques designed for applying EDA to speech recognizer development. Finally,

we discussed the role that EDA can play in improving the performance of

state of the art recognizers and advocated a paradigm in which it plays a

much greater role in system development than it has till now.

The contributions of this chapter are both philosophical and technical. The

major philosophical contribution is the framing of speech recognizer design as

a statistical modelling process in which we iteratively fit models to data, look
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for structure in the residuals of the fit using EDA, and try to account for that

structure by improving the models. The description is drawn from that used by

Tukey and Wilks in their paper about the philosophical underpinnings of EDA

[Tukey 86]. In the case of speech recognition, we have equated the residuals

to recognizer errors. We used this framework to guide the development of the

techniques introduced in Section 6.2 and our suggestions in Section 6.3 about

how EDA can be applied to speech recognition development most profitably.

As we stated in that section, one of the key contributions that EDA can make

along these lines is to reveal model deficiencies unanticipated by the system

designer.

The major technical contributions have been the development of techniques

for diagnosing speech recognition errors at a detailed level and the application

of these techniques to a case study of the word spotter. The techniques make

use of graphical representations and linear transformations to display the data

in a form interpretable by the system designer.

The key findings in the case study were (a) that most of the low-scoring

keyword tokens in the spotter were due to a single speaker, and (b) that the

spotter's poor performance on each of these tokens could be attributed to a

small number of measurements whose values were far from that expected by the

keyword model. These findings, along with those of Chapter 5 concerning the

single-pronunciation model for "MIT", encourage us to believe that in general,

it will be possible to identify a small number of deficiencies that account for a

disproportionate number of recognizer errors. By remedying the deficiencies,

it should be possible improve recognizer performance. Thus, the effort spent

in error diagnosis will likely be repaid in greater performance.
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Chapter 7

Summary, Future Work, and
Conclusions

7.1 Summary and Conclusions

We now summarize previous chapters briefly, emphasizing the main findings.

More detailed summaries, discussions and suggestions for future work appear

at the ends of each chapter.

In Chapter 3, we introduced the segment-based HMM. Like the conven-

tional frame-based HMM, it consists of two stages. In the first stage, the

incoming signal is split into segments that do not overlap in time. In the sec-

ond stage, measurements are made on these segments. The frame-based and

segment-based systems differ in that the segments in a frame-based HMM each

have a fixed duration while those of the segment-based 11MM are determined

by a an algorithm that determines segment boundaries based on acoustic cri-

teria. The segmenter attempts to delineate regions that are associated with

distinct phones. Such a strategy has three potential advantages over frame-

based HMM's:

1. The statistical dependence of short-time spectral measurements made

near each other can be modelled better.

2. The segmenter tends to place boundaries at points of large spectral

change, thus identifying points which arc believed to be rich in infor-
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mation useful for phonetic discrimination.

3. Such a scheme produces fewer segments per unit time than is typical in

frame-based systems, leading to computational savings.

The scheme also has theoretical and practical advantages over the stochas-

tic segment approach [Ostendorf 89, Zue 89a]. Theoretically, HMM scoring

is better-formulated mathematically than stochastic segment scoring, as we

pointed out in Section 1.3. Practically, the scheme can be computationally

cheaper if it uses a fast segmenter and separates segmentation from recogni-

tion.

We showed that the segmenter behavior is systematic. Thus, it could po-

tentially be well-modelled within the HMM framework. For instance, phonetic

regions over which there was a large degree of spectral change, e.g., diphthongs,

tended to be associated with more segments than regions that consisted of a

single short event, such as those of voiced stops. An HMM that could match

segment sequences of various lengths was used to model this variability.

On the other hand, acoustically similar or coarticulated phonetic regions

were often merged into a single segment or into a sequence of segments whose

boundaries differed from those of the phonetic regions. To account for this phe-

nomenon, we employed biphone models, which modelled most of the merged

phonetic regions. Because there were relatively few tokens available to train

these models, we pointed out in Chapter 3 that their use might represent a

weakness of the segment-based HMM approach. In Chapter 4, we showed

that this was not the case by analyzing the results of phonetic recognition

experiments.

However, accounting for all possible biphones or even for all those that

were merged at least once in the training set would have required too many

models, leading to infeasibly large computational requirements and very small

training sets for some of the biphone models. Thus, we accounted for only

those that had the most training data associated with them. As we pointed
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out in Chapter 3, in a large vocabulary recognizer some mechanism would have

to be devised to account for all the merged labels. The need to account for all

merges might be a shortcoming of the approach.

Chapter 4 had three goals. The first was to investigate the effectiveness

of different measurement sets for acoustic modelling of segments. We used a

phonetic recognition task to gauge their relative effectiveness. We were also

interested in investigating how acoustic-phonetic knowledge is represented in

these measurements and to use the results of these investigations to improve

phonetic recognition performance. The third goal of the chapter was to com-

pare phonetic recognition performance of the segment-based HMM to that of

existing approaches.

The chief finding of of the measurement set comparison was that the addi-

tion of spectral measurements made 5 and 35 ms before and after the bound-

aries of the modelled segment to those made within the segment could lead

to a substantial and statistically significant increase in performance. Con-

versely, there was little gain when spectral representations of the beginning

and end of the segment were added to a representation of the segment's cen-

ter. We attribute the latter finding to the fact that the segment-based HMM

can account for spectral change within a phonetic region without the need for

spectral measurements to be made at multiple locations within a segment.

We were quite successful in developing insight into knowledge representa-

tion but less so in applying the results to phonetic recognition. For instance,

we were able to show that linear combinations of mel-frequency spectral coef-

ficients modelled formants poorly. We built a multiple regression model based

on nonlinear transformations of the coefficients that performed much better

at modelling the formants, albeit over a limited frequency range. However,

we were unable to significantly improve phonetic recognition performance by

including these formant estimates in the acoustic measurement set. In an-

other case, we chose the positions to make the out-of-segment measurements

discussed in the previous paragraph so as to minimize the number of confu-
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sions among stop consonants. However, while the addition of out-of-segment

measurements resulted in a large overall reduction in the number of phonetic

misclassifications, there was little reduction in the number of confusions among

stops.

We thus believe that to reap the benefits of incorporating acoustic-phonetic

knowledge in a recognizer, it is important to analyze recognizer behavior in

detail, focusing on the effect of modelling assumptions that intervene between

the measurement set and the recognizer output. By understanding the effect

of these assumptions, models that better exploit the addition of knowledge

can potentially be built. The development of techniques for conducting this

detailed analysis was the main subject of Chapter 6, to be summarized below.

Our comparison of phonetic recognition performance of the segment-based

HMM to that of existing approaches provided evidence that the segment-based

HMM is competitive with the others. A direct comparison is hampered by the

fact that the corpora used to test the systems investigated here and elsewhere

are different. Also, we tested our system on male speakers only while previous

experiments concerned speakers of both genders. However, we believe that

these differences did not have a major effect on our results. Thus, we conclude

that the segment-based HMM approach is promising enough to pursue further

by refining aspects of the system.

We applied the segment-based HMM to word modelling in Chapter 5. The

main goals of that chapter were to investigate certain issues pertinent to HMM

word modelling in general and in the segment-based HMM framework in paT-

ticular and to introduce the segment score plot, a technique for diagnosing

recognizer errors. For each word in our study, we compared different word

models by evaluating the performance of a spotter for that word as a function

of various models of the word. The models varied along three dimensions:

training method, type of pronunciation network, and measurement set.

In the course of this investigation, we developed novel algorithms for word

spotter scoring and performance evaluation. The algorithms are particularly
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suited to detailed error analysis, one of the main topics of the thesis, but have

certain features that are generally appealing for word spotting implementa-

tions.

The models that performed the best overall were trained from word-specific

data and employed networks intermediate in bushiness between those that al-

low single pronunciations and those that allow many alternate pronunciations.

These results held for both function and content words. We conclude from this

result that even with a small number of training tokens, word-specific models

can outperform subword-based models.

Also, we noted that when subword-based models were used, the bushiest

pronunciation networks we employed tended to perform best. The interaction

between training method and network type should be kept in mind in applica-

tions where it might be infeasible to train word-specific models for every word

in the vocabulary.

Single-pronunciation networks performed particularly badly, a result we

studied more closely using the segment score plot. We were able to demon-

strate that for the word "MIT", the single pro 1 iunciation network failed be-

cause it was unable to account for variability in the realization of stop closures.

We concluded from this case study that detailed error analysis techniques could

be useful for discovering model deficiencies.

Finally, we found that the effect of measurement set on performance was

similar to that found in the phonetic recognition task of Chapter 4: a measure-

ment set that included out-of-segment measurements outperformed one that

did not by a wide margin for almost all words in the study.

In Chapter 6, we introduced the principles of exploratory data analysis and

showed how they could be applied to the design of speech recognition systems.

In particular, we advocated an iterative approach involving model building,

error analysis, and model improvement.

We developed interactive graphical techniques for performing detailed er-

ror analysis and applied them to a case study of the spotter for the word
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"near." The techniques are organized hierarchically so that a system designer

could investigate errors at various levels of detail. At the most detailed level,

we developed a technique for decomposing acoustic scores for a segment into

subscores associated with distinct spectral measurements. We also developed

a format for displaying the differences in subscores between the actual and

hypothesized segment label in a manner such that they could be easily inter-

preted.

We showed that for the case study, the tokens of "near" which were scored

lowest by the word spotter were likely to be uttered by a particular speaker.

Furthermore, all such tokens received low scores because F, throughout the

fronted vowel in "near" was very low compared to the value expected by the

"near" model. We infer from this finding and from the finding in Chapter 5

concerning "MIT" that a disproportionate number of recognizer errors might

often be able to be attributed to a small number of causes. If so, then a small

number of model improvements could potentially lead to a large performance

improvement in a speech recognition system. Error diagnostic tools are impor-

tant in this regard in that they allow the identification of modelling deficiencies

that must be dealt with to effect such an improvement. While we did not use

the tools to improve performance in this thesis, we suggested strategies for

doing so.

7.2 Future Work

Several areas of this work are worthy of further investigation. First of all,

to better evaluate the segment-based HMM approach, it should be tested on

the same phonetic recognition task as that used by other researcherq, using a

large set of speakers from the TIMIT corpus. As we have mentioned, there are

several ways in which we believe the system can be improved. In particular,

techniques such as context-dependent [Lee 90] and and tied-mixture Gaussian

PDF modelling [Bellegarda 901 that have been shown to improve frame-based
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HMM performance should improve segment-based HMM performance as well.

Also, as we pointed out in Chapters 3 and 4, alternate segmentation algo-

rithms, HMM topologies, methods for associating segments with labels, and

strategies for choosing the subword label inventory should be explored. None

of these aspects of the system were optimized based on phonetic recognition

or word spotting performance. Work along these lines should lead to improved

system performance.

Clearly, there is more work to be done in the acoustic modelling of seg-

ments, as well, particularly in the realm of employing measurements based on

acoustic-phonetic knowledge. As we suggested in the discussion of formant

modelling in Chapter 4, one strategy for choosing such measurements is to

determine non-linear transformations of spectral measurements for modelling

attributes of speech believed to be important for discrimination, such as for-

mant frequencies and voice onset time. To get the most out of adding these

knowledge-based measurements, it will be desirable to analyze in detail their

effect on performance using tools similar to those developed in Chapter 6.

The problem of word modelling, particularly in the segment-based HMM

framework, should also be investigated further. The choice of pronunciation

network, in particular, seems to have a large effect on word model performance.

More general and principled methods for determining word networks than

those we employed should be developed. To apply segment-based HMM's to

continuous speech recognition, there are problems that remain to be worked

out. For example, biphones can occur across word boundaries, as occurred

in the case study of Chapter 6, for exa.nple. This introduces complexities in

modelling the beginning and ending of words. In some cases, word pairs that

frequently share a biphone might have to be modelled as a single unit.

Finally, much remains to be done in the application of exploratory data

analysis to speech recognizer design. The most important extension, of course

is to show that the techniques can actually be used to improve recognizer

performance, rather then simply diagnosing errors. In Chapter 6, we suggested
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several general methods for making such improvements (e.g., two-pass methods

based on the N-best search [Schwartz 92]) based on the findings of detailed

error analyses. We also showed that, for the cases we studied at least, errors

tend to be highly structured and therefore "curable" by making a relatively

small number of modelling improvements. Thus, we are confident that the

data analytic methodology can be used profitably. However, to be convi. red

of this, we would prefer to apply it in the development of a practical speech

recognition application.

7.3 Concluding Remarks

Throughout our work, we have investigated the problem of representing acoustic-

phonetic knowledge in statistical models. We chose the segment-based HMM

for our work in large part because we believe that measurements made on seg-

ments are superior to those made on frames for representing such knowledge.

At the same time we retained the HMM framework because it has been shown

to be a powerful formalism for statistical modelling of speech.

In the course of this investigation, we conducted a series of experiments in

which well-known statistical techniques - multiple regression, clustering, dis-

criminant analysis - were used to explore the relationship between the set of

measurements used to characterize segments and attributes known to be rel-

evant for phonetic discrimination, such as formants and distinctive features.

The experiments were also designed to test whether measurements and trans-

formations developed with su,.h techniques could be used to improve recognizer

performance.

Finally, we developed tools for analyzing recognizer behavior and diagnos-

ing errors. The tools are aimed at enabling the system designer to visualize

the complicated statistical processes underlying recognizer behavior in terms

of his/her acoustic-phonetic knowledge base. Thus, they can be used to iden-

tify deficiencies in the modelling process that intervene between the input of
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acoustic-phonetic knowledge and the recognizer output. Once the deficiencies

are identified, it should become clearer to the designer what steps to take to

achieve better recognition performance.

As we pointed out in the thesis introduction and in Chapter 6, the em-

phasis on knowledge representation and detailed analysis is not shared by all

researchers in the field of automatic speech recognition. Instead, the prevailing

approach emphasizes more sophisticated statistical approaches, more training

data, and more computation. It is difficult to refute claims that the prevailing

approach will lead to inexorable improvement in the state of the art of speech

recognition. However, we believe that as recognizers come to be applied more

frequently in real-world problems in which humans outperform automatic rec-

ognizers, e.g., noisy environments, multiple speakers, and spontaneous speech,

it will be necessary to not only better understand the structure of speech but

to apply that understanding to build better statistical models for speech recog-

nition. We hope that the model building philosophy and the specific methods

we have introduced will facilitate bridging the gap between speech knowledge

and speech recognizer design.
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Appendix A

Determining Weights in
Maximum Spectral Deviation
Computation

This appendix outlines the method used for determining the weights in the

maximum spectral deviation coefficient computation described in Section 3.4.4.

As described in that section, the expression

q

Sarg maxwi(h-- -

is used to determine the frame ÷ to be used for computing the maximum spec-

tral deviation coefficients, where q is the number of hair cell envelope principal

components (HCEPC's) used in the computation, hi, is the ith HCEPC mea-

sured at frame r, h,,. is the linearly interpolated estimate of hi, determined as

in Equation 3.7, and w_, 1 < i < q are the weights, which are used to account

for the fact that the scale of (hi, - hi,)' for r = • is dependent on i, the index

of the HCEPC.

For each HCEPC i, the weight ui used was 1/si2 where si is an estimate

of the standard deviation of (hi+ - hi). Making this estimate by computing

the above expression over a sample of segments and using the sample standard

deviation is complicated by the fact that the estimate requires ý to be known.

However, " depends on the weights themselves so making a direct estimate is

impossible. Instead, for each segment in the sample used to make the estimate,
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the maximum spectral deviation for each component i was used in making the

estimate for that component. Formally, for each segment j in the sample, the

value

v= max I hij,- hi

was used in determining si, where Tj is the number of frames in segment j,

hij, is the value of the ith HCEPC for frame r on segment j and h13 , is the

value of the linearly interpolated estimate of hij,.. While the sample standard

deviation of vij over all j could be used in making the estimate, doing so would

ignore the statistical dependence of vj on Tj, the length of the segment. In

particular, it stands to reason that the typical maximum spectral deviation

for any component should increase with segment length since for a longer

segment, there should tend to be a larger spectral change over the course of

the segment. If this effect is ignored, the sample standard deviations might

be dominated by the large values of vi, obtained for the longer segment-.

Thus, the determination of the set of si was more involved. In particular, the

algorithm for computing the set is:

1. For each i and each segment length t, 4 < t < 100, where t is measured

in number of frames, compute

11 22
Pit = [Nrfl7( (T) t) all , v,,) 2

N (T, 0 all j, T, = t = t

where N(T, = t) is the number of segments in the sample consisting of

t frames. Thus, pit is an estimate of the standard deviation in vi, as a

function of t. For t = 100, pit is computed in the same manner but all

segments j for which Tj > 100 are used in the computation. There were

no segments of fewer than four frames so there were no estimates made

for t < 4.

2. For 2 < i < q, set si to be the slope of the least squares fit through the
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origin of the set of pit to the set of Pit multiplied by s1 . Thus,

Z200 Pit Pit
zt=l pit,

The slope computed for component i can be interpreted as an estimate of

the ratio of the standard deviation of vi, to that of the standard deviation

of v12 averaged over all segment lengths.

3. Finally, as stated above, set w; = 1/1s2, 1 < i < q.

The segmenter that was eventually used in our work includ A the maximum

spectral deviations MSDi for 1 < i < 3. The proportions oi the empirically

determined weights for these components were w, - 1.0, w2 = .66 and w3 =

.51, confirming our hypothesis tha•t the weights would decrease with i.
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Appendix B

Estimating Bigram Transition
Probabilities

This appendix describes the method we use to estimate initial subword model

state probabilities and transition probabilities between subword models for

use in the phonetic recognition task described in Chapter 4 and the word

spotting task of Chapter 5. For the purposes of this discussion, we introduce

the term segment sequence label (SSL) to refer to the phone or biphone label

associated with a sequence of segments by the segmenter. For example, if the

segmenter produces a segment sequence associated with the biphone /B//C/,

where /B/ and /I/ are variables that represent phonetic transcription labels,

we will refer to this event as an occurrence of the SSL B-C. As described in

Chapter 3, any model x is trained using segment sequences labelled x. We

will continue to follow the convention just introduced, distinguishing variables

used to represent SSL's and model labels from those used to represent phonetic

transcription labels by enclosing the latter in slashes (/) and using uppercase

letters to refer to components of SSL and model names and lowercase letters

to refer to complete SSL and model labels, which may represent phones or

biphones.

The usual bigram estimate for the transition probability Pr(x --+ y) from

314



model x to model y can be expressed as

1r(x --* y)= N(x - y) (B.1)
N(x)

where N(x -- y) is the number of times that the SSL sequence xy occurs in

the training set and N(x) is the count of SSL x.

In a frame-based HMM system, estimating the bigram transition probabil-

ities is straightforward since each model represents a single phone. Thus, Eq.

B.1 can be computed simply using the training set phonetic transcriptions for

computing phone sequence counts. For instance,

Pr(A -* B)= N(/A/I-B/)NCIAI)

where N(/A/ -- /B/) is the number of times phone /BI follows /A/ and

N(/A/) is the count of /AI in the training set. It is easy to generalize this

method for estimating the 7r(B), the initial state probability for model B, by

using the artifice of starting each utterance with the label /BEGIN/. Then
r(B) - N(BEGIN --, B)

N(BEGIN)

We could directly apply Eq. B.1 to estimate transition probabilities in the

segment-based HMM. The problem with this simple approach is that there

may not be sufficient training data for estimating some of these transition

probabilities. In particular if x or y is a biphone SSL, both the equation's

numerator and denominator may be too small to obtain a good estimate.

For instance, for SSL A to be followed by SSL B-C,

1. phone /A/ must be followed by phone /BI,

2. phone /B/ must be followed by phone /C/, and

3. the segmenter must produce SSL B-C from the phone sequence /B//C.

This event may be too rare to allow for a good estimate of f5r(A -, B-C).

We deal with this problem by assuming that the process for generating

phone sequences is independent of segmenter behavior. By decomposing the
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problem in this way, we estimate the probability of the above event as the

product of probability estimates for each of the three subevents just described,

none of which is as rare as the occurrence of SSL B-C after SSL A. A bigram

model is used to estimate each event.

To be precise, say we are estimating Pr(D-A -- B-C), where D and C

may each be a null label, i.e, if D is a null label, D-A = A. For clarity we

will assume that all SSL's are of length one or two, although this assumption

is not important in the following description. Our segmenter rarely produces

SSL's of length greater than two in any case.

Define a language training set £ and a segmenter training set S. The

former is used to estimate phone sequence probabilities and the latter is used

to model segmenter behavior. The language training set consists of the ten

male VOYAGER training speakers used to train the acoustic models as well

as sixteen female VOYAGER speakers. These data are used since the phone

sequence counts in these utterances should be similar to those in the test set,

which are also VOYAGER utterances. The segmenter training set consists of

the male TIMIT and VOYAGER speakers used to train the acoustic models. By

using a distinct training set for each purpose, we have access to more training

data than if both training sets consisted of the male VOYAGER speakers.

Let Nc (D-A .-- B-C) be an estimateof the number of times that SSL D-A

is followed by B-C in C. Note that we cannot compute the actual number

because £ consists of female VOYAGER speakers whose utterances have not

been run through the segmenter. Let Nrt(D-A) be an estimate of the count

of SSL D-A in £. Then the formula

Pr(D-A -- B--C) _ c(D-A - B-C) (B.2)
N1c(D-A)

is used to estimate the transition probability. First, we assume that the prob-

ability is independent of D. This is in keeping with the spirit of bigram

estimates since D is two labels to the left of B and bigram estimates only

depend on the identities of adjacent labels. Thus, the above equation is valid
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for any SSL ending with label A.

Using this assumption, we estimate the denominator of Eq. B.2 as follows.

We note that an SSL u-A ending in A is produced for each instance of phone

IAI except when A is merged on the right into some SSL A-v, v being a

non-null label. Thus, letting Pr(u-Aj I/A/) be the estimated probability that

A is not merged on the right and Nc(/A/) be the count of /A/ in the language

training set,

9,.(D-A) = Nc(/A/)Pr(u-AI /A/). (B.3)

The segmenter training set S is used to compute Pr(u-AI/A/). Letting Ns(u-A)

be the number of instances of SSL's ending in A and Ns(/A/) be the count of

phone /A/ in the segmenter training set,

1r(u-AI /A/) - Ns(u-A)

Ns(/AI) (B.4)

Thus, the denominator of Eq. B.2 can be computed by combining Equations

B.3 and B.4.

Similar reasoning is used to compute the numerator. An SSL that starts

with B follows one ending in A each time IBI follows fAI and the two are not

merged into a single SSL A-B. Similar to above, the formula for computing

Nc(u-A --* B-0), an estimate of the number of times such an SSL sequence

occurs in training set £ is
Ns(A-B) (B.5)

Nc.(u-A B-v)(/A/ -= /B/)--

where Nc(/A/I /B/) is the number of times /B/ follows /A/ in the language

training set, Ns(A-B) is the count of SSL A-B in the segmenter training set

and Ns(/AI --+ /B/) is the number of times IBI follows IAI in the segmenter

training set.

Given this estimate of the number of times an SSL starting with B follows

SSL D-A in the language training set, the estimated number of instances that

SSL D-A is followed by SSL B-C is given by

1c(D-A -, B-C) = N-(u-A -- B-v)Pr(B-CjB-v)
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where 1r(B-CIB-v) is the estimated probability that given that an SSL starts

with B, the it is B-C. The formula for this is
Pr(B-CIB-v) = Ns(B-C) (B.6)

Ns( B--v)

where the i,±merator in Equation B.6 is the count of SSL B-C and the denom-

inator is the the count of all SSL's starting with B in the segmenter training

set.

Combining Eqs. B.2-B.6, we have

N -(II /B/)(1 - )W~T B Ns(B-,)Ns(/A/)t5r( D-A --+ R--C) = NN// -*/ /( - s(IA -- )Ns B - Ns A)/R
Nc(/A/)Ns(B-v)Ns(u-A)

(B.7)

and this is used to estimate transition probabilities between models. Initial

model state probabilities are estimated using the same formula using the arti-

fice of beginning each utterance with the label /BEGIN/ as described above.
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Appendix C

Guide to Abbreviations

On the following page is a table of abbreviations of terms that are used

throughout the thesis. Note that abbreviations for most of the segmental

measurements referred to in Chapter 4 are defined in Tables 4.2 and 4.3.
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Abbreviation Meaning
CG center of gravity
EDA exploratory data analysis
GMDA grouped multiple discriminant analysis
GTI garbage trial interval
HCE hair-cell envelopes
HCEPC hair-cell envelope principal components
HMM hidden Markov model
IPA International Phonetic Alphabet
KTI keyword trial interval
LOR log odds ratio
LPC linear predictive coding
MDA multiple discriminant analysis
MFSC mel-frequency spectral coefficient
MFSPC mel-frequency spectral principal components
MLS multi-level segmentation
MSD maximum spectral deviation
MSDS maximum spectral deviation spectrum
MSE mean squared error
PDF probability distribution function
RMS root mean square
RMSE root mean squared error
ROC receiver operating curve
SSL segment sequence label
VOT voice onset time
VQ vector quantization

Table C.1: Table of abbreviations.
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